61A Lecture 15

Monday, October 1

The Story So Far About Data

Dispatch Dictionaries

A dispatch dictionary has messages as keys and functions (or
data objects) as values.

Dictionaries handle the message look-up logic; we concentrate
on implementing useful behavior.

Demo

Object-Oriented Programming

Data abstraction: Enforce a separation between how data values A method for organizing modular programs
are represented and how they are used.

Abstract data types: A representation of a data type is valid

- Abstraction barriers

- Message passing

if it satisfies certain behavior conditions. - Bundling together information and related behavior

Message passing: We can organize large programs by building A metaphor for computation using distributed state

components that relate to each other by passing messages.

- Each object has its own local state.

- Each object also knows how to manage its own local state,

Dispatch functions/dictionaries: A single object can include based on the messages it receives.

many different (but related) behaviors that all manipulate

the same local state.

- Several objects may all be instances of a common type.

- Different types may relate to each other as well.

(A1l of these techniques can be implemented

using only functions and assignment.)

Classes

A class serves as a template for its instances.

Idea: All bank accounts have a
balance and an account holder;
the Account class should add
those attributes to each newly
created instance.

Idea: All bank accounts should
have "withdraw" and "deposit"
behaviors that all work in the
same way.

Better idea: All bank accounts
share a "withdraw" method.

Specialized syntax & vocabulary to support this metaphor

The Class Statement

class <name>(

>>> a = Account('Jim") <suite>
>>> a.holder
"Jim'

A class statement creates a new class and binds that class to

>>> a.balance <name> in the first frame of the current environment.

Statements in the <suite> create attributes of the class.

. As soon as an instance is created, it is passed to init
>>> a.d t (15 . . N ’ — —!
15 a.deposit(13) which is an attribute of the class.
>>> a.withdraw(10)

5 .

>>> a.bal class Account(object):

5 a-batance def _ init_ (self, account_holder):
>>> a.withdraw(10) self.balance = 0

"Insufficient funds' self.holder = account_holder

Initialization Object Identity

Idea: All bank accounts have a balance and an account holder; Every object that is an instance of a user-defined class
the Account class should add those attributes. has a unique identity:

>>> a = Account('Jim") o

>>> a.holder \ >>> a = Account('Jim")

"Jim Trmmmmmmmmsmmmmmmmossssmmmmsosssees . >>> b = Account('Jack')

>>> a.balance
Identity testing is performed by "is" and "is not" operators:

When a class is called:

1. A new instance of that class is created: - ----------- .

2. The constructor __init__ of the class is called with the E
new object as its first argument (called self), along with

>>> a is a
True

>>> a is not b
True

Binding an object to a new name using assignment does not

additional arguments provided in the call expression. create a new object:

class Account(object) ;. cucmmmmoo i - >>> ¢ = a
def __init__(self, account_holder): >>> ¢ is a
self.balance = 0 L s True

self.holder = account_holder

Methods Invoking Methods

Methods are defined in the suite of a class statement A1l invoked methods have access to the object via the self

parameter, and so they can all access and manipulate the
class Account(object): object's state.

def _ init_ (self, account_holder):
self.balance = 0 class Account(object): .
self.holder = . (_iflled with two arguments)

account_holder

def deposit(self, amount): def deposit (S)
self.balance = self.balance + amount self.balance = self.balance + amount
return self.balance return self.balance
def withdraw(self, amount):
if amount > self.balance: Dot notation automatically supplies the first argument
return 'Insufficient funds' to a method.

self.balance = self.balance - amount
return self.balance

>>> tom_account = Account('Tom")

These def statements create function objects as always, 100 e

but their names are bound as attributes of the class. {: Invoked with one argument :
Dot Expressions Accessing Attributes

Objects receive messages via dot notation Using getattr, we can look up an attribute using a string,

just as we did with a dispatch function/dictionary
Dot notation accesses attributes of the instance or its class

>>> getattr(tom_account, 'balance')
<expression> . <name> 10

))) >>> hasattr(tom_account, 'deposit')
The <expression> can be any valid Python expression True

The <name> must be a simple name

getattr and dot expressions look up a name in the same way
Evaluates to the value of the attribute looked up by <name>

in the object that is the value of the <expression>
Looking up an attribute name in an object may return:

',(10)‘3

e One of its instance attributes, or
: Call expression

e One of the attributes of its class

Methods and Functions

Python distinguishes between:

« Functions, which we have been creating since the beginning
of the course, and

« Bound methods, which couple together a function and the
object on which that method will be invoked.

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>

>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)
1011

>>> tom_account.deposit(1000)

2011

Class Attributes

Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance.

class Account(object):

interest = 0.02 # A class attribute

def __init__(self, account_holder):
self.balance = 0
self.holder = account_holder

Additional methods would be defined here

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest

0.02 interest is not part
>>> jim_account.interest of the instance that
0.02 was somehow copied

from the class!

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1.

Evaluate the <expression> to the left of the dot, which
yields the object of the dot expression.

. <name> is matched against the instance attributes of

that object; if an attribute with that name exists, its

value is returned.

3. If not, <name> is looked up in the class, which yields a

class attribute value.

4. That value is returned unless it is a function, in which
case a bound method is returned instead.

Assignment Statements and Attributes

Assignment statements with a dot expression on their left-hand
side affect attributes for the object of that dot expression

e If the object is an instance, then assignment sets an

instance attribute

e If the object is a class, then assignment sets a class

attribute
>>> jim_account = Account('Jim') | >>> jim_account.interest = 0.08
>>> tom_account = Account('Tom') | >>> jim_account.interest
>>> tom_account.interest 0.08
0.02 >>> tom_account.interest
>>> jim_account.interest 0.04
2 >>> Account.interest = 0.05

>>> tom_account.interest
0.02

>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

