
61A Lecture 13

Wednesday, September 26

A Function with Behavior That Varies Over Time

2

>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15)
35

>>> withdraw = make_withdraw(100)

Let's model a bank account that has a balance of $100

Argument:
amount to withdraw

Second withdrawal
of the same amount

Return value:
remaining balance

Different
return value!

Where's this
balance stored?

Within the
function!

Persistent Local State

3http://goo.gl/StRZP

A function with a
parent frame

The parent contains
local state

Every call changes
the balance

Reminder: Local Assignment

4

Execution rule for assignment statements:

1. Evaluate all expressions right of =, from left to right.

2. Bind the names on the left the resulting values in the
first frame of the current environment.

Example: http://goo.gl/wcF71

Assignment binds names
to values in the

current local frame

Non-Local Assignment & Persistent Local State

5

def make_withdraw(balance):

 """Return a withdraw function with a starting balance."""

 def withdraw(amount):

 nonlocal balance

 if amount > balance:

 return 'Insufficient funds'

 balance = balance - amount

 return balance

 return withdraw

Declare the name
"balance" nonlocal

Re-bind balance where it
was bound previously

Demo

The Effect of Nonlocal Statements

6

http://www.python.org/dev/peps/pep-3104/

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to
pre-existing bindings in an enclosing scope.

Names listed in a nonlocal statement must not collide
with pre-existing bindings in the local scope.

http://docs.python.org/release/3.1.3/reference/simple_stmts.html#the-nonlocal-statement

Effect: Future references to that name refer to its
pre-existing binding in the first non-local frame of
the current environment in which that name is bound.

nonlocal <name> , <name 2>, ...

Python Docs: an
"enclosing scope"

The Many Meanings of Assignment Statements

7

x = 2

Status Effect

•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x"
to object 2 in the first frame of
the current environment.

•No nonlocal statement
•"x" is bound locally

Re-bind name "x" to object 2 in the
first frame of the current env.

•nonlocal x
•"x" is bound in a
non-local frame

•"x" also bound locally

SyntaxError: name 'x' is parameter
and nonlocal

•nonlocal x
•"x" is not bound in
a non-local frame

SyntaxError: no binding for nonlocal
'x' found

•nonlocal x
•"x" is bound in a
non-local frame

Re-bind "x" to 2 in the first non-
local frame of the current
environment in it is bound.

Python Particulars

Python pre-computes which frame contains each name before
executing the body of a function.

Therefore, within the body of a function, all instances of a
name must refer to the same frame.

8

Local assignment

Mutable Values & Persistent Local State

9

Mutable values can be changed without a nonlocal statement.

Name-value binding
cannot change

Mutable value
can change

Creating Two Different Withdraw Functions

10

Demo

The Benefit of Non-Local Assignment

•Ability to maintain some state that is local to a function,
but evolves over successive calls to that function.

•The binding for balance in the first non-local frame of the
environment associated with an instance of withdraw is
inaccessible to the rest of the program.

•An abstraction of a bank account that manages its own
internal state.

11

John's
Account

$10

Steven's
Account

$1,000,000

Multiple References to a Single Withdraw Function

12

Demo

Sameness and Change

• As long as we never modify objects, we can regard a compound object
to be precisely the totality of its pieces.

• A rational number is just its numerator and denominator.

• This view is no longer valid in the presence of change.

• Now, a compound data object has an "identity" that is something
more than the pieces of which it is composed.

• A bank account is still "the same" bank account even if we change
the balance by making a withdrawal.

• Conversely, we could have two bank accounts that happen to have the
same balance, but are different objects.

13

John's
Account

$10

Steven's
Account

$10

Referential Transparency, Lost

•Expressions are referentially transparent if substituting an
expression with its value does not change the meaning of a
program.

14

•Re-binding operations violate the condition of referential
transparency because they let us define functions that do
more than just return a value; we can change the environment,
causing values to mutate.

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

Demo

