61A Lecture 10

Monday, September 17

For Statement Execution Procedure

```
for <name> in <expression>
    <suite>
```

1. Evaluate the header <expression>, which must yield an iterable value.
2. For each element in that sequence, in order:
A. Bind <name> to that element in the first frame of the current environment.
B. Execute the <suite>.

The Range Type

A range is a sequence of consecutive integers.*

Length: ending value - starting value
Element selection: starting value + index

* Ranges can actually represent more general integer sequences.

```
def count(s, value):
    total = 0
    for elem;in s:
```

Name bound in the first frame of the current environment
if elem == value:
total $=$ total +1
return total

Sequence Unpacking in For Statements

```
    A sequence of
    fixed-length sequences
>>> pairs \(=((1,2),(2,2),(2,3),(4,4))\)
>>> same_count \(=0\)
```


[^0]Membership \& Slicing
The Python sequence abstraction has two more behaviors!

Membership.

$$
\begin{aligned}
& \ggg \text { digits }=(1,8,2,8) \\
& \ggg 2 \text { in digits } \\
& \text { True } \\
& \ggg 1828 \text { not in digits } \\
& \text { True }
\end{aligned}
$$

Slicing.

$$
\begin{aligned}
& \ggg \text { digits [0:2] } \\
& (1,8) \\
& \ggg \text { digits [1:] } \\
& (8,2,8)
\end{aligned}
$$

Strings are an Abstraction

Representing data：

'200' '1.2e-5' 'False' '(1, 2)'

Representing language：

＂＂＂And，as imagination bodies forth
The forms of things to unknown，and the poet＇s pen Turns them to shapes，and gives to airy nothing A local habitation and a name．

Representing programs：

$$
\text { 'curry = lambda f: lambda } x: \text { lambda } y: f(x, y)^{\prime}
$$

Strings are Sequences

```
>>> city = 'Berkeley'
>>> len(city)
8
>>> city[3] 'k' { An element of a string
```

Length．A sequence has a finite length．
Element selection．A sequence has an element
corresponding to any non－negative integer index less
than its length，starting at 0 for the first element．

＇Shabu Shabu＇

Representing Strings：the ASCII Standard

American Standard Code for Information Interchange

					ll'								"L		fee		
		0	1	2	3				7	8	9	A	B	C	D	E	F
	0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
\pm	1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
	2		$!$	＂	\＃	\＄	\％	\＆	＇	1	）	＊	＋	，	－	－	1
m	3	0	1	2	3	4	5	6	7	8	9	：	；	＜	＝	＞	？
$\ddot{\sim}$	4	＠	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
3	5	P	Q	R	S	T	U	V	W	X	Y	Z	［	1	］	\wedge	－
	6	－	a	b	c	d	e	f	g	h	i	j	k	1	m	n	\bigcirc
∞	7	p	9	r	s	t	u	v	w	x	y	z	\｛	1	\}	\sim	DEL

[^1]－Layout was chosen to support sorting by character code
－Rows indexed 2－5 are a useful 6－bit（64 element）subset
－Control characters were designed for transmission

```
>>> 'I am string!
'I am string!'
>>> "I've got an apostrophe"
"I've got an apostrophe"
>>> '您好'
'您好'
>>> """'The Zen of Python
claims, Readability counts.
Read more: import this.""""
'The Zen of Python\inclaims, Readability counts.\nRead more:
```


Single- and double-quoted
Single- and double-quoted
strings are equivalent
strings are equivalent strings are equivalent

String Membership Differs from Other Sequence Types

The＂in＂and＂not in＂operators match substrings
＞＞＞＇here＇in＂Where＇s Waldo？＂
True

Why？Working with strings，we care about words，not characters

The count method also matches substrings

Representing Strings：the Unicode Standard

Bonus Material

－109，000 characters
－ 93 scripts（organized）
－Enumeration of character properties，such as case
－Supports bidirectional display order
－A canonical name for every
character

U＋0058 LATIN CAPITAL LETTER X
U＋263a WHITE SMILING FACE
U＋2639 WHITE FROWNING FACE
atto：／／ian－albert com／ricode chart／uider 思

UTF (UCS (Universal Character Set) Transformation Format)
Unicode: Correspondence between characters and integers
UTF-8: Correspondence between numbers and bytes
A byte is 8 bits and can encode any integer 0-255

	00000000	0	
bytes	00000001	1	integers
	00000010	2	
	00000011	3	

Variable-length encoding: integers vary in the number of bytes required to encode them!

In Python: string length in characters, bytes length in bytes

Demo

Sequences as Conventional Interfaces

Consider two problems:

- Sum the even members of the first n Fibonacci numbers.

D List the letters in the acronym for a name, which includes the first letter of each capitalized word.

	Δ	Δ	Δ
filter iscap:	'University',	'California',	'Berkeley ${ }^{\prime}$
map first:	'U',	'C',	'B'
accumulate tuple:	('U',	'C',	'B')

Accumulation and Iterable Values

Iterable objects give access to some elements in order.
Python-specific construct; less specific than a sequence
Many built-in functions take iterable objects as argument.

tuple	Return a tuple containing the elements
sum	Return the sum of the elements
min	Return the minimum of the elements
\max	Return the maximum of the elements

For statements also operate on iterable values.

Sequences as Conventional Interfaces

Consider two problems:
D = Sum the even members of the first n Fibonacci numbers.

- List the letters in the acronym for a name, which includes the first letter of each capitalized word.

enumerate naturals:	$1,2,3,4,5,6,7,8,9,10,11$.		
map fib:	$0,1,1,2,3,5,8,13,21,34,55$.		
filter iseven:	Δ	Δ	Δ
accumulate sum:	0,	2,	8,

Mapping a Function over a Sequence

Apply a function to each element of the sequence
>>> alternates $=(-1,2,-3,4,-5)$
>>> tuple(map(abs, alternates))
(1, 2, 3, 4, 5)
The returned value of map is an iterable map object

A constructor for the

built-in map type

The returned value of filter is an iterable filter object

Demo

Generator Expressions

One large expression that evaluates to an iterable object
(<map exp> for <name> in <iter exp> if <filter exp>)

- Evaluates to an iterable object.
- <iter exp> is evaluated when the generator expression is evaluated.
- Remaining expressions are evaluated when elements are accessed.

Short version: (<map exp> for <name> in <iter exp>)
Precise evaluation rule introduced in Chapter 4.

Reducing a Sequence

Reduce is a higher-order generalization of max, min, \& sum.
>>> from operator import mul
>>> from functools import reduce
\ggg reduce (mul, $(1,2,3,4,5))$
120
First argument:
A two-argument function

Like accumulate from Homework 2, but with iterable objects

[^0]: >>> same_count
 2

[^1]: 16 columns： 4 bits

