
CS 61A Lecture 9

Friday, September 14

The Sequence Abstraction

There isn't just one sequence type (in Python or in general)

This abstraction is a collection of behaviors:

2

red, orange, yellow, green, blue, indigo, violet.

Length. A sequence has a finite length.

Element selection. A sequence has an element
corresponding to any non-negative integer index less
than its length, starting at 0 for the first element.

 0 , 1 , 2 , 3 , 4 , 5 , 6 .

The sequence abstraction is shared among several types.

Tuples are Sequences

(Demo)

3

Box-and-Pointer Notation

4

The Closure Property of Data Types

• A method for combining data values satisfies the closure
property if:

• The result of combination can itself be combined using the
same method.

• Closure is the key to power in any means of combination
because it permits us to create hierarchical structures.

• Hierarchical structures are made up of parts, which
themselves are made up of parts, and so on.

5

Tuples can contain tuples as elements

Recursive Lists
Constructor:
def rlist(first, rest):
 """Return a recursive list from its first element and the rest."""

6

Selectors:
def first(s):
 """Return the first element of a recursive list s."""

def rest(s):
 """Return the rest of the elements of a recursive list s."""

Behavior condition(s):

If a recursive list s is constructed from a first
element f and a recursive list r, then

• first(s) returns f, and

• rest(s) returns r, which is a recursive list.

Implementing Recursive Lists with Pairs

7

A recursive list
is a pair

The first element of
the pair is the first
element of the list

The second element of
the pair is the rest

of the list

None
represents
the empty

list

(Demo)

1 , 2 , 3 , 4

Implementing the Sequence Abstraction

8

Length. A sequence has a finite length.

Element selection. A sequence has an element
corresponding to any non-negative integer index less
than its length, starting at 0 for the first element.

(Demo)

def len_rlist(s):
 """Return the length of recursive list s."""
 length = 0
 while s != empty_rlist:
 s, length = rest(s), length + 1
 return length

def getitem_rlist(s, i):
 """Return the element at index i of recursive list s."""
 while i > 0:
 s, i = rest(s), i - 1
 return first(s)

Environment Diagram for getitem_rlist

9

Sequence Iteration

10

(Demo)

def count(s, value):
 total = 0
 for elem in s:

 if elem == value:
 total = total + 1
 return total

Name bound in the first frame
of the current environment

Not on
Midterm 1

For Statement Execution Procedure

11

for <name> in <expression>:
 <suite>

1. Evaluate the header <expression>, which must yield an
iterable value.

2. For each element in that sequence, in order:

A. Bind <name> to that element in the local environment.

B. Execute the <suite>.

Not on
Midterm 1

Sequence Unpacking in For Statements

>>> pairs = ((1, 2), (2, 2), (2, 3), (4, 4))

>>> same_count = 0

12

>>> for x, y in pairs:
 if x == y:
 same_count = same_count + 1

>>> same_count
2

A sequence of
fixed-length sequences

A name for each element in
a fixed-length sequence

Each name is bound to a value,
as in multiple assignment

Not on
Midterm 1

The Range Type

>>> tuple(range(-2, 2))
(-2, -1, 0, 1)

>>> tuple(range(4))
(0, 1, 2, 3)

13

A range is a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

range(-2, 2)

Length: ending value - starting value

Element selection: starting value + index

Tuple construction

With a 0 starting value

(Demo)

Not on
Midterm 1

Membership & Slicing

>>> digits = (1, 8, 2, 8)
>>> 2 in digits
True
>>> 1828 not in digits
True

14

>>> digits[0:2]
(1, 8)
>>> digits[1:]
(8, 2, 8)

The Python sequence abstraction has two more behaviors!

Membership.

Slicing.

Not on
Midterm 1

