
61A Lecture 8

Wednesday, September 12

Data Abstraction

2

Data Abstraction

• Compound objects combine primitive objects together

2

Data Abstraction

• Compound objects combine primitive objects together

• A date: a year, a month, and a day

2

Data Abstraction

• Compound objects combine primitive objects together

• A date: a year, a month, and a day

• A geographic position: latitude and longitude

2

Data Abstraction

• Compound objects combine primitive objects together

• A date: a year, a month, and a day

• A geographic position: latitude and longitude

• An abstract data type lets us manipulate compound
objects as units

2

Data Abstraction

• Compound objects combine primitive objects together

• A date: a year, a month, and a day

• A geographic position: latitude and longitude

• An abstract data type lets us manipulate compound
objects as units

• Isolate two parts of any program that uses data:

2

Data Abstraction

• Compound objects combine primitive objects together

• A date: a year, a month, and a day

• A geographic position: latitude and longitude

• An abstract data type lets us manipulate compound
objects as units

• Isolate two parts of any program that uses data:

 How data are represented (as parts)

2

Data Abstraction

• Compound objects combine primitive objects together

• A date: a year, a month, and a day

• A geographic position: latitude and longitude

• An abstract data type lets us manipulate compound
objects as units

• Isolate two parts of any program that uses data:

 How data are represented (as parts)

 How data are manipulated (as units)

2

Data Abstraction

• Compound objects combine primitive objects together

• A date: a year, a month, and a day

• A geographic position: latitude and longitude

• An abstract data type lets us manipulate compound
objects as units

• Isolate two parts of any program that uses data:

 How data are represented (as parts)

 How data are manipulated (as units)

• Data abstraction: A methodology by which functions
enforce an abstraction barrier between
representation and use

2

Data Abstraction

• Compound objects combine primitive objects together

• A date: a year, a month, and a day

• A geographic position: latitude and longitude

• An abstract data type lets us manipulate compound
objects as units

• Isolate two parts of any program that uses data:

 How data are represented (as parts)

 How data are manipulated (as units)

• Data abstraction: A methodology by which functions
enforce an abstraction barrier between
representation and use

2

All
Programmers

Data Abstraction

• Compound objects combine primitive objects together

• A date: a year, a month, and a day

• A geographic position: latitude and longitude

• An abstract data type lets us manipulate compound
objects as units

• Isolate two parts of any program that uses data:

 How data are represented (as parts)

 How data are manipulated (as units)

• Data abstraction: A methodology by which functions
enforce an abstraction barrier between
representation and use

2

All
Programmers

Great
Programmers

Rational Numbers

3

Rational Numbers

3

numerator

denominator

Rational Numbers

Exact representation of fractions

3

numerator

denominator

Rational Numbers

Exact representation of fractions

A pair of integers

3

numerator

denominator

Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation is lost!

3

numerator

denominator

Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation is lost!

Assume we can compose and decompose rational numbers:

3

numerator

denominator

Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation is lost!

Assume we can compose and decompose rational numbers:

3

numerator

denominator

• rational(n, d) returns a rational number x

Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation is lost!

Assume we can compose and decompose rational numbers:

3

numerator

denominator

• rational(n, d) returns a rational number xConstructor

Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation is lost!

Assume we can compose and decompose rational numbers:

3

numerator

denominator

• rational(n, d) returns a rational number x

• numer(x) returns the numerator of x

Constructor

Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation is lost!

Assume we can compose and decompose rational numbers:

3

numerator

denominator

• rational(n, d) returns a rational number x

• numer(x) returns the numerator of x

• denom(x) returns the denominator of x

Constructor

Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation is lost!

Assume we can compose and decompose rational numbers:

3

numerator

denominator

• rational(n, d) returns a rational number x

• numer(x) returns the numerator of x

• denom(x) returns the denominator of x

Constructor

Selectors

Rational Number Arithmetic

4

Example: General Form:

Rational Number Arithmetic

4

3

2

3

5
*

Example: General Form:

Rational Number Arithmetic

4

3

2

3

5
*

9

10
=

Example: General Form:

Rational Number Arithmetic

4

3

2

3

5
*

9

10
=

nx

dx

ny

dy
*

Example: General Form:

Rational Number Arithmetic

4

3

2

3

5
*

9

10
=

nx

dx

ny

dy
*

nx*ny

dx*dy
=

Example: General Form:

Rational Number Arithmetic

4

3

2

3

5
*

9

10
=

3

2

3

5
+

nx

dx

ny

dy
*

nx*ny

dx*dy
=

Example: General Form:

Rational Number Arithmetic

4

3

2

3

5
*

9

10
=

3

2

3

5
+

21

10
=

nx

dx

ny

dy
*

nx*ny

dx*dy
=

Example: General Form:

Rational Number Arithmetic

4

3

2

3

5
*

9

10
=

3

2

3

5
+

21

10
=

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

Example: General Form:

Rational Number Arithmetic

4

3

2

3

5
*

9

10
=

3

2

3

5
+

21

10
=

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

Example: General Form:

Rational Number Arithmetic Implementation

5

Rational Number Arithmetic Implementation

5

• rational(n, d) returns a rational number x

• numer(x) returns the numerator of x

• denom(x) returns the denominator of x

Rational Number Arithmetic Implementation

5

• rational(n, d) returns a rational number x

• numer(x) returns the numerator of x

• denom(x) returns the denominator of x

Wishful
thinking

def mul_rational(x, y):
 return rational(numer(x) * numer(y), denom(x) * denom(y))

Rational Number Arithmetic Implementation

5

• rational(n, d) returns a rational number x

• numer(x) returns the numerator of x

• denom(x) returns the denominator of x

Wishful
thinking

def mul_rational(x, y):
 return rational(numer(x) * numer(y), denom(x) * denom(y))

Rational Number Arithmetic Implementation

5

• rational(n, d) returns a rational number x

• numer(x) returns the numerator of x

• denom(x) returns the denominator of x

Constructor

Wishful
thinking

def mul_rational(x, y):
 return rational(numer(x) * numer(y), denom(x) * denom(y))

Rational Number Arithmetic Implementation

5

• rational(n, d) returns a rational number x

• numer(x) returns the numerator of x

• denom(x) returns the denominator of x

Constructor Selectors

Wishful
thinking

def mul_rational(x, y):
 return rational(numer(x) * numer(y), denom(x) * denom(y))

Rational Number Arithmetic Implementation

5

• rational(n, d) returns a rational number x

• numer(x) returns the numerator of x

• denom(x) returns the denominator of x

Constructor Selectors

Wishful
thinking

def add_rational(x, y):
 nx, dx = numer(x), denom(x)
 ny, dy = numer(y), denom(y)
 return rational(nx * dy + ny * dx, dx * dy)

def eq_rational(x, y):
 return numer(x) * denom(y) == numer(y) * denom(x)

Tuples

6

Tuples

>>> pair = (1, 2)

6

Tuples

>>> pair = (1, 2)
>>> pair

6

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

6

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

6

A tuple literal:
Comma-separated expression

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair

6

A tuple literal:
Comma-separated expression

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x

6

A tuple literal:
Comma-separated expression

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1

6

A tuple literal:
Comma-separated expression

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1
>>> y

6

A tuple literal:
Comma-separated expression

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1
>>> y
2

6

A tuple literal:
Comma-separated expression

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1
>>> y
2

6

A tuple literal:
Comma-separated expression

"Unpacking" a tuple

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]

6

A tuple literal:
Comma-separated expression

"Unpacking" a tuple

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1

6

A tuple literal:
Comma-separated expression

"Unpacking" a tuple

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]

6

A tuple literal:
Comma-separated expression

"Unpacking" a tuple

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2

6

A tuple literal:
Comma-separated expression

"Unpacking" a tuple

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem

6

A tuple literal:
Comma-separated expression

"Unpacking" a tuple

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)

6

A tuple literal:
Comma-separated expression

"Unpacking" a tuple

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1

6

A tuple literal:
Comma-separated expression

"Unpacking" a tuple

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)

6

A tuple literal:
Comma-separated expression

"Unpacking" a tuple

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2

6

A tuple literal:
Comma-separated expression

"Unpacking" a tuple

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2

6

A tuple literal:
Comma-separated expression

"Unpacking" a tuple

Element selection

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2

6

A tuple literal:
Comma-separated expression

"Unpacking" a tuple

Element selection

More tuples next lecture

Representing Rational Numbers

7

Representing Rational Numbers

7

def rational(n, d):
 """Construct a rational number x that represents n/d."""
 return (n, d)

Representing Rational Numbers

7

Construct a tuple

def rational(n, d):
 """Construct a rational number x that represents n/d."""
 return (n, d)

Representing Rational Numbers

7

Construct a tuple

def rational(n, d):
 """Construct a rational number x that represents n/d."""
 return (n, d)

from operator import getitem

def numer(x):
 """Return the numerator of rational number x."""
 return getitem(x, 0)

Representing Rational Numbers

7

Construct a tuple

def rational(n, d):
 """Construct a rational number x that represents n/d."""
 return (n, d)

from operator import getitem

def numer(x):
 """Return the numerator of rational number x."""
 return getitem(x, 0)

def denom(x):
 """Return the denominator of rational number x."""
 return getitem(x, 1)

Representing Rational Numbers

7

Construct a tuple

Select from a tuple

def rational(n, d):
 """Construct a rational number x that represents n/d."""
 return (n, d)

from operator import getitem

def numer(x):
 """Return the numerator of rational number x."""
 return getitem(x, 0)

def denom(x):
 """Return the denominator of rational number x."""
 return getitem(x, 1)

Reducing to Lowest Terms

8

Example:

Reducing to Lowest Terms

8

Example:

3

2

5

3
*

Reducing to Lowest Terms

8

Example:

3

2

5

3
*

5

2
=

Reducing to Lowest Terms

8

Example:

3

2

5

3
*

5

2
=

15

6

1/3

1/3
*

5

2
=

Reducing to Lowest Terms

8

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

15

6

1/3

1/3
*

5

2
=

Reducing to Lowest Terms

8

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

1

2
=

15

6

1/3

1/3
*

5

2
=

Reducing to Lowest Terms

8

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

1

2
=

25

50

1/25

1/25
*

1

2
=

15

6

1/3

1/3
*

5

2
=

from fractions import gcd

Reducing to Lowest Terms

8

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

1

2
=

25

50

1/25

1/25
*

1

2
=

15

6

1/3

1/3
*

5

2
=

from fractions import gcd

Reducing to Lowest Terms

8

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

1

2
=

25

50

1/25

1/25
*

1

2
=

15

6

1/3

1/3
*

5

2
=

Greatest common divisor

from fractions import gcd

def rational(n, d):
 """Construct a rational number x that represents n/d."""
 g = gcd(n, d)
 return (n//g, d//g)

Reducing to Lowest Terms

8

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

1

2
=

25

50

1/25

1/25
*

1

2
=

15

6

1/3

1/3
*

5

2
=

Greatest common divisor

Abstraction Barriers

9

add_rationals mul_rationals eq_rationals

rational numer denom

tuple getitem

Rational numbers as whole data values

Rational numbers as numerators & denominators

Rational numbers as tuples

However tuples are implemented in Python

Violating Abstraction Barriers

add_rational((1, 2), (1, 4))

def divide_rational(x, y):

 return (x[0] * y[1], x[1] * y[0])

10

Does not use
constructors

Violating Abstraction Barriers

add_rational((1, 2), (1, 4))

def divide_rational(x, y):

 return (x[0] * y[1], x[1] * y[0])

10

Does not use
constructors Twice!

Violating Abstraction Barriers

add_rational((1, 2), (1, 4))

def divide_rational(x, y):

 return (x[0] * y[1], x[1] * y[0])

10

Does not use
constructors Twice!

No selectors!

Violating Abstraction Barriers

add_rational((1, 2), (1, 4))

def divide_rational(x, y):

 return (x[0] * y[1], x[1] * y[0])

10

Does not use
constructors Twice!

No selectors!

And no constructor!

Violating Abstraction Barriers

add_rational((1, 2), (1, 4))

def divide_rational(x, y):

 return (x[0] * y[1], x[1] * y[0])

10

Violating Abstraction Barriers

10

What is Data?

11

What is Data?

• We need to guarantee that constructor and selector functions
together specify the right behavior.

11

What is Data?

• We need to guarantee that constructor and selector functions
together specify the right behavior.

• Behavior condition: If we construct rational number x from
numerator n and denominator d, then
numer(x)/denom(x) must equal n/d.

11

What is Data?

• We need to guarantee that constructor and selector functions
together specify the right behavior.

• Behavior condition: If we construct rational number x from
numerator n and denominator d, then
numer(x)/denom(x) must equal n/d.

• An abstract data type is some collection of selectors and
constructors, together with some behavior condition(s).

11

What is Data?

• We need to guarantee that constructor and selector functions
together specify the right behavior.

• Behavior condition: If we construct rational number x from
numerator n and denominator d, then
numer(x)/denom(x) must equal n/d.

• An abstract data type is some collection of selectors and
constructors, together with some behavior condition(s).

• If behavior conditions are met, the representation is valid.

11

What is Data?

• We need to guarantee that constructor and selector functions
together specify the right behavior.

• Behavior condition: If we construct rational number x from
numerator n and denominator d, then
numer(x)/denom(x) must equal n/d.

• An abstract data type is some collection of selectors and
constructors, together with some behavior condition(s).

• If behavior conditions are met, the representation is valid.

11

You can recognize data types by behavior, not by bits

Behavior Conditions of a Pair

12

Behavior Conditions of a Pair

To implement our rational number abstract data type,
we used a two-element tuple (also known as a pair).

12

Behavior Conditions of a Pair

To implement our rational number abstract data type,
we used a two-element tuple (also known as a pair).

What is a pair?

12

Behavior Conditions of a Pair

To implement our rational number abstract data type,
we used a two-element tuple (also known as a pair).

What is a pair?

12

Constructors, selectors, and behavior conditions:

Behavior Conditions of a Pair

To implement our rational number abstract data type,
we used a two-element tuple (also known as a pair).

What is a pair?

12

Constructors, selectors, and behavior conditions:

If a pair p was constructed from elements x and y, then

• getitem_pair(p, 0) returns x, and

• getitem_pair(p, 1) returns y.

Behavior Conditions of a Pair

To implement our rational number abstract data type,
we used a two-element tuple (also known as a pair).

What is a pair?

12

Constructors, selectors, and behavior conditions:

If a pair p was constructed from elements x and y, then

• getitem_pair(p, 0) returns x, and

• getitem_pair(p, 1) returns y.

Together, selectors are the inverse of the constructor

Behavior Conditions of a Pair

To implement our rational number abstract data type,
we used a two-element tuple (also known as a pair).

What is a pair?

12

Constructors, selectors, and behavior conditions:

If a pair p was constructed from elements x and y, then

• getitem_pair(p, 0) returns x, and

• getitem_pair(p, 1) returns y.

Together, selectors are the inverse of the constructor

Generally true of container types.

Behavior Conditions of a Pair

To implement our rational number abstract data type,
we used a two-element tuple (also known as a pair).

What is a pair?

12

Constructors, selectors, and behavior conditions:

If a pair p was constructed from elements x and y, then

• getitem_pair(p, 0) returns x, and

• getitem_pair(p, 1) returns y.

Together, selectors are the inverse of the constructor

Generally true of container types.
Not true for rational
numbers because of GCD

Functional Pair Implementation

13

def pair(x, y):
 """Return a functional pair."""
 def dispatch(m):
 if m == 0:
 return x
 elif m == 1:
 return y
 return dispatch

Functional Pair Implementation

13

def pair(x, y):
 """Return a functional pair."""
 def dispatch(m):
 if m == 0:
 return x
 elif m == 1:
 return y
 return dispatch

Functional Pair Implementation

13

This function
represents a pair

def pair(x, y):
 """Return a functional pair."""
 def dispatch(m):
 if m == 0:
 return x
 elif m == 1:
 return y
 return dispatch

Functional Pair Implementation

13

This function
represents a pair

Constructor is a
higher-order function

def pair(x, y):
 """Return a functional pair."""
 def dispatch(m):
 if m == 0:
 return x
 elif m == 1:
 return y
 return dispatch

Functional Pair Implementation

13

This function
represents a pair

Constructor is a
higher-order function

def getitem_pair(p, i):
 """Return the element at index i of pair p."""
 return p(i)

def pair(x, y):
 """Return a functional pair."""
 def dispatch(m):
 if m == 0:
 return x
 elif m == 1:
 return y
 return dispatch

Functional Pair Implementation

13

This function
represents a pair

Constructor is a
higher-order function

Selector defers to
the object itself

def getitem_pair(p, i):
 """Return the element at index i of pair p."""
 return p(i)

Using a Functionally Implemented Pair

>>> p = pair(1, 2)

>>> getitem_pair(p, 0)
1

>>> getitem_pair(p, 1)
2

14

Using a Functionally Implemented Pair

>>> p = pair(1, 2)

>>> getitem_pair(p, 0)
1

>>> getitem_pair(p, 1)
2

14

As long as we do not violate
the abstraction barrier,

we don't need to know that
pairs are just functions

Using a Functionally Implemented Pair

>>> p = pair(1, 2)

>>> getitem_pair(p, 0)
1

>>> getitem_pair(p, 1)
2

14

If a pair p was constructed from elements x and y, then

• getitem_pair(p, 0) returns x, and

• getitem_pair(p, 1) returns y.

As long as we do not violate
the abstraction barrier,

we don't need to know that
pairs are just functions

Using a Functionally Implemented Pair

>>> p = pair(1, 2)

>>> getitem_pair(p, 0)
1

>>> getitem_pair(p, 1)
2

14

If a pair p was constructed from elements x and y, then

• getitem_pair(p, 0) returns x, and

• getitem_pair(p, 1) returns y.

This pair representation is valid!

As long as we do not violate
the abstraction barrier,

we don't need to know that
pairs are just functions

