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Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation is lost!

Assume we can compose and decompose rational numbers:

3

numerator

denominator

• rational(n, d) returns a rational number x

• numer(x) returns the numerator of x

• denom(x) returns the denominator of x

Constructor

Selectors
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def mul_rational(x, y):
    return rational(numer(x) * numer(y), denom(x) * denom(y))

Rational Number Arithmetic Implementation

5

• rational(n, d) returns a rational number x

• numer(x) returns the numerator of x

• denom(x) returns the denominator of x

Constructor Selectors

Wishful 
thinking

def add_rational(x, y):
    nx, dx = numer(x), denom(x)
    ny, dy = numer(y), denom(y)
    return rational(nx * dy + ny * dx, dx * dy)

def eq_rational(x, y):
    return numer(x) * denom(y) == numer(y) * denom(x)
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Construct a tuple

Select from a tuple

def rational(n, d):
    """Construct a rational number x that represents n/d."""
    return (n, d)

from operator import getitem

def numer(x):
    """Return the numerator of rational number x."""
    return getitem(x, 0)

def denom(x):
    """Return the denominator of rational number x."""
    return getitem(x, 1)
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add_rationals  mul_rationals  eq_rationals  

rational  numer  denom

tuple  getitem

Rational numbers as whole data values

Rational numbers as numerators & denominators

Rational numbers as tuples

However tuples are implemented in Python
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What is Data?

• We need to guarantee that constructor and selector functions 
together specify the right behavior.

• Behavior condition: If we construct rational number x from 
numerator n and denominator d, then 
numer(x)/denom(x) must equal n/d.

• An abstract data type is some collection of selectors and 
constructors, together with some behavior condition(s).

• If behavior conditions are met, the representation is valid.

11

You can recognize data types by behavior, not by bits
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Behavior Conditions of a Pair

To implement our rational number abstract data type,
we used a two-element tuple (also known as a pair).

What is a pair?

12

Constructors, selectors, and behavior conditions:

If a pair p was constructed from elements x and y, then 

• getitem_pair(p, 0) returns x, and 

• getitem_pair(p, 1) returns y.

Together, selectors are the inverse of the constructor

Generally true of container types.
Not true for rational 
numbers because of GCD
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def pair(x, y):
    """Return a functional pair."""
    def dispatch(m):
        if m == 0:
            return x
        elif m == 1:
            return y
    return dispatch

Functional Pair Implementation

13

This function 
represents a pair 

Constructor is a 
higher-order function

Selector defers to 
the object itself

def getitem_pair(p, i):
    """Return the element at index i of pair p."""
    return p(i)
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Using a Functionally Implemented Pair

>>> p = pair(1, 2)

>>> getitem_pair(p, 0)
1

>>> getitem_pair(p, 1)
2

14

If a pair p was constructed from elements x and y, then 

• getitem_pair(p, 0) returns x, and 

• getitem_pair(p, 1) returns y.

This pair representation is valid!

As long as we do not violate 
the abstraction barrier, 

we don't need to know that 
pairs are just functions


