
61A Lecture 7

Monday, September 10



Hog Contest Rules

2



Hog Contest Rules

• Two people submit one entry; Max of one entry per person

2



Hog Contest Rules

• Two people submit one entry; Max of one entry per person

• The score for an entry is the sum of win rates against 
every other entry.

2



Hog Contest Rules

• Two people submit one entry; Max of one entry per person

• The score for an entry is the sum of win rates against 
every other entry.

• All strategies must be deterministic, pure functions of the 
current player scores!  Non-deterministic strategies will 
be disqualified.

2



Hog Contest Rules

• Two people submit one entry; Max of one entry per person

• The score for an entry is the sum of win rates against 
every other entry.

• All strategies must be deterministic, pure functions of the 
current player scores!  Non-deterministic strategies will 
be disqualified.

• To enter: submit proj1contest with a file hog.py that 
defines a final_strategy function by Monday 9/24 @ 11:59pm

2



Hog Contest Rules

• Two people submit one entry; Max of one entry per person

• The score for an entry is the sum of win rates against 
every other entry.

• All strategies must be deterministic, pure functions of the 
current player scores!  Non-deterministic strategies will 
be disqualified.

• To enter: submit proj1contest with a file hog.py that 
defines a final_strategy function by Monday 9/24 @ 11:59pm

• All winning entries will receive 2 points of extra credit

2



Hog Contest Rules

• Two people submit one entry; Max of one entry per person

• The score for an entry is the sum of win rates against 
every other entry.

• All strategies must be deterministic, pure functions of the 
current player scores!  Non-deterministic strategies will 
be disqualified.

• To enter: submit proj1contest with a file hog.py that 
defines a final_strategy function by Monday 9/24 @ 11:59pm

• All winning entries will receive 2 points of extra credit

• The real prize: honor and glory

2



Hog Contest Rules

• Two people submit one entry; Max of one entry per person

• The score for an entry is the sum of win rates against 
every other entry.

• All strategies must be deterministic, pure functions of the 
current player scores!  Non-deterministic strategies will 
be disqualified.

• To enter: submit proj1contest with a file hog.py that 
defines a final_strategy function by Monday 9/24 @ 11:59pm

• All winning entries will receive 2 points of extra credit

• The real prize: honor and glory

2

Keegan Mann, 
Yan Duan & Ziming Li, 

Brian Prike & Zhenghao Qian, 
Parker Schuh & Robert Chatham

Fall 2011 Winners



Choosing Names

3

Practical 
guidance



Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

3

Practical 
guidance



From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

3

Practical 
guidance



From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

3

Practical 
guidance

boolean turn_is_over



From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

3

Practical 
guidance

boolean turn_is_over

d dice



From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

3

Practical 
guidance

boolean turn_is_over

d dice

play_helper take_turn



From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

3

>>> from operator import mul
>>> def square(let):

Practical 
guidance

boolean turn_is_over

d dice

play_helper take_turn



From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

3

>>> from operator import mul
>>> def square(let):
        return mul(let, let)

Practical 
guidance

boolean turn_is_over

d dice

play_helper take_turn



From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

3

>>> from operator import mul
>>> def square(let):
        return mul(let, let)

Practical 
guidance

boolean turn_is_over

d dice

play_helper take_turn



From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

3

>>> from operator import mul
>>> def square(let):
        return mul(let, let)

Practical 
guidance

boolean turn_is_over

d dice

play_helper take_turn



From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

3

>>> from operator import mul
>>> def square(let):
        return mul(let, let)

Not stylish

Practical 
guidance

boolean turn_is_over

d dice

play_helper take_turn



Which Values Deserve a Name

4

Practical 
guidance



Which Values Deserve a Name

4

Practical 
guidance

Repeated compound expressions:



Which Values Deserve a Name

4

Practical 
guidance

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
    x = x + sqrt(square(a) + square(b))



Which Values Deserve a Name

4

Practical 
guidance

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
    x = x + sqrt(square(a) + square(b))

h = sqrt(square(a) + square(b))
if h > 1:
    x = x + h



Which Values Deserve a Name

4

Practical 
guidance

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
    x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

h = sqrt(square(a) + square(b))
if h > 1:
    x = x + h



Which Values Deserve a Name

4

Practical 
guidance

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
    x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

h = sqrt(square(a) + square(b))
if h > 1:
    x = x + h



Which Values Deserve a Name

4

Practical 
guidance

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
    x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

h = sqrt(square(a) + square(b))
if h > 1:
    x = x + h

d = sqrt(square(b) - 4 * a * c)
x = (-b + d) / (2 * a)



Which Values Deserve a Name

4

Practical 
guidance

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
    x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

h = sqrt(square(a) + square(b))
if h > 1:
    x = x + h

d = sqrt(square(b) - 4 * a * c)
x = (-b + d) / (2 * a)

However, not 
every value 
needs a name

(demo)



Which Values Deserve a Name

4

Practical 
guidance

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
    x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

h = sqrt(square(a) + square(b))
if h > 1:
    x = x + h

d = sqrt(square(b) - 4 * a * c)
x = (-b + d) / (2 * a)

However, not 
every value 
needs a name

(demo)



Test-Driven Development

5

Practical 
guidance



Test-Driven Development

Write the test of a function before you write the function

5

Practical 
guidance



Test-Driven Development

Write the test of a function before you write the function

5

A test will clarify the (one) job of the function

Practical 
guidance



Test-Driven Development

Write the test of a function before you write the function

5

A test will clarify the (one) job of the function

Your tests can help identify tricky edge cases

Practical 
guidance



Test-Driven Development

Write the test of a function before you write the function

5

A test will clarify the (one) job of the function

Your tests can help identify tricky edge cases

Develop incrementally and test each piece before moving on

Practical 
guidance



Test-Driven Development

Write the test of a function before you write the function

5

A test will clarify the (one) job of the function

Your tests can help identify tricky edge cases

Develop incrementally and test each piece before moving on

You can't depend upon code that hasn't been tested

Practical 
guidance



Test-Driven Development

Write the test of a function before you write the function

5

A test will clarify the (one) job of the function

Your tests can help identify tricky edge cases

Develop incrementally and test each piece before moving on

You can't depend upon code that hasn't been tested

Run your old tests again after you make new changes

Practical 
guidance



Function Decorators

(demo)

6



Function Decorators

(demo)

6

@trace1
def triple(x):
    return 3 * x



Function Decorators

(demo)

6

@trace1
def triple(x):
    return 3 * x

Function 
decorator



Function Decorators

(demo)

6

@trace1
def triple(x):
    return 3 * x

Decorated 
function

Function 
decorator



Function Decorators

(demo)

6

@trace1
def triple(x):
    return 3 * x

is identical to

Decorated 
function

Function 
decorator



Function Decorators

(demo)

6

@trace1
def triple(x):
    return 3 * x

is identical to

def triple(x):
    return 3 * x
triple = trace1(triple)

Decorated 
function

Function 
decorator



Function Decorators

(demo)

6

@trace1
def triple(x):
    return 3 * x

is identical to

def triple(x):
    return 3 * x
triple = trace1(triple)

Decorated 
function

Why not 
just use 
this?

Function 
decorator



Functional Abstractions

7



Functional Abstractions

7

def square(x):
    return mul(x, x)



Functional Abstractions

7

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)



Functional Abstractions

7

What does sum_squares need to know about square?

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)



Functional Abstractions

• Square takes one argument.

7

What does sum_squares need to know about square?

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)



Functional Abstractions

• Square takes one argument.

7

Yes

What does sum_squares need to know about square?

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)



Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name square.

7

Yes

What does sum_squares need to know about square?

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)



Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name square.

7

Yes

No

What does sum_squares need to know about square?

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)



Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name square.

• Square computes the square of a number.

7

Yes

No

What does sum_squares need to know about square?

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)



Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name square.

• Square computes the square of a number.

7

Yes

No

Yes

What does sum_squares need to know about square?

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)



Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name square.

• Square computes the square of a number.

• Square computes the square by calling mul.

7

Yes

No

Yes

What does sum_squares need to know about square?

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)



Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name square.

• Square computes the square of a number.

• Square computes the square by calling mul.

7

Yes

No

Yes

No

What does sum_squares need to know about square?

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)



Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name square.

• Square computes the square of a number.

• Square computes the square by calling mul.

7

def square(x):
    return pow(x, 2)

Yes

No

Yes

No

What does sum_squares need to know about square?

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)



Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name square.

• Square computes the square of a number.

• Square computes the square by calling mul.

7

def square(x):
    return pow(x, 2)

def square(x):
    return mul(x, x-1) + x

Yes

No

Yes

No

What does sum_squares need to know about square?

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)



Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name square.

• Square computes the square of a number.

• Square computes the square by calling mul.

7

def square(x):
    return pow(x, 2)

def square(x):
    return mul(x, x-1) + x

If the name “square” were bound to a built-in function, 
sum_squares would still work identically 

Yes

No

Yes

No

What does sum_squares need to know about square?

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)



Data

8



Data

8

http://www.skyrill.com/seatinghabits/

Student seating preferences at MIT



Data

8

Front of the classroom

http://www.skyrill.com/seatinghabits/

Student seating preferences at MIT



Objects

9



Objects

9

• Representations of information



Objects

9

• Representations of information

• Data and behavior, bundled together to create...



Objects

9

• Representations of information

• Data and behavior, bundled together to create...

Abstractions



Objects

9

• Representations of information

• Data and behavior, bundled together to create...

• Objects represent properties, interactions, & processes

Abstractions



Objects

9

• Representations of information

• Data and behavior, bundled together to create...

• Objects represent properties, interactions, & processes

• Object-oriented programming: 

Abstractions



Objects

9

• Representations of information

• Data and behavior, bundled together to create...

• Objects represent properties, interactions, & processes

• Object-oriented programming: 

• A metaphor for organizing large programs

Abstractions



Objects

9

• Representations of information

• Data and behavior, bundled together to create...

• Objects represent properties, interactions, & processes

• Object-oriented programming: 

• A metaphor for organizing large programs

• Special syntax for implementing classic ideas

Abstractions



Objects

(Demo)

9

• Representations of information

• Data and behavior, bundled together to create...

• Objects represent properties, interactions, & processes

• Object-oriented programming: 

• A metaphor for organizing large programs

• Special syntax for implementing classic ideas

Abstractions



Python Objects

In Python, every value is an object.

10



Python Objects

In Python, every value is an object.

10

• All objects have attributes



Python Objects

In Python, every value is an object.

10

• All objects have attributes

• A lot of data manipulation happens through methods



Python Objects

In Python, every value is an object.

10

• All objects have attributes

• A lot of data manipulation happens through methods

• Functions do one thing; objects do many related things



Python Objects

In Python, every value is an object.

10

• All objects have attributes

• A lot of data manipulation happens through methods

• Functions do one thing; objects do many related things

The next four weeks:



Python Objects

In Python, every value is an object.

10

• All objects have attributes

• A lot of data manipulation happens through methods

• Functions do one thing; objects do many related things

• Use built-in objects to introduce classic ideas

The next four weeks:



Python Objects

In Python, every value is an object.

10

• All objects have attributes

• A lot of data manipulation happens through methods

• Functions do one thing; objects do many related things

• Use built-in objects to introduce classic ideas

• Create our own objects using the built-in object system

The next four weeks:



Python Objects

In Python, every value is an object.

10

• All objects have attributes

• A lot of data manipulation happens through methods

• Functions do one thing; objects do many related things

• Use built-in objects to introduce classic ideas

• Create our own objects using the built-in object system

• Implement an object system using built-in objects

The next four weeks:



Native Data Types

11

In Python, every object has a type.



Native Data Types

11

In Python, every object has a type.

>>> type(today)
<class 'datetime.date'>



Native Data Types

Properties of native data types:

11

In Python, every object has a type.

>>> type(today)
<class 'datetime.date'>



Native Data Types

Properties of native data types:

1. There are primitive expressions that evaluate to native 
objects of these types.

11

In Python, every object has a type.

>>> type(today)
<class 'datetime.date'>



Native Data Types

Properties of native data types:

1. There are primitive expressions that evaluate to native 
objects of these types.

2. There are built-in functions, operators, and methods to 
manipulate these objects.

11

In Python, every object has a type.

>>> type(today)
<class 'datetime.date'>



Numeric Data Types

12



Numeric Data Types

Numeric types in Python:

12



Numeric Data Types

Numeric types in Python:

>>> type(2)

12



Numeric Data Types

Numeric types in Python:

>>> type(2)

<class 'int'>

12



Numeric Data Types

Numeric types in Python:

>>> type(2)

<class 'int'>

12

Represents integers
exactly



Numeric Data Types

Numeric types in Python:

>>> type(2)

<class 'int'>

>>> type(1.5)

12

Represents integers
exactly



Numeric Data Types

Numeric types in Python:

>>> type(2)

<class 'int'>

>>> type(1.5)

<class 'float'>

12

Represents integers
exactly



Numeric Data Types

Numeric types in Python:

>>> type(2)

<class 'int'>

>>> type(1.5)

<class 'float'>

12

Represents integers
exactly

Represents real numbers 
approximately



Numeric Data Types

Numeric types in Python:

>>> type(2)

<class 'int'>

>>> type(1.5)

<class 'float'>

>>> type(1+1j)

12

Represents integers
exactly

Represents real numbers 
approximately



Numeric Data Types

Numeric types in Python:

>>> type(2)

<class 'int'>

>>> type(1.5)

<class 'float'>

>>> type(1+1j)

<class 'complex'>

12

Represents integers
exactly

Represents real numbers 
approximately

(demo)



Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)

13

Bonus
Material



Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)

13

Representing real numbers:

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

Bonus
Material



Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)

13

Representing real numbers:

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

1/3 =

Bonus
Material



Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)

13

Representing real numbers:

0011 1111 1101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

1/3 =

Bonus
Material



Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)

13

Representing real numbers:

False in a Boolean contexts:

0011 1111 1101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

1/3 =

Bonus
Material



Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)

13

Representing real numbers:

False in a Boolean contexts:

0011 1111 1101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

1/3 =

Bonus
Material



Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)

13

Representing real numbers:

False in a Boolean contexts:

0011 1111 1101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

1/3 =

Bonus
Material



Working with Real Numbers

14

Bonus
Material



Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):

14

Bonus
Material



Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

14

Bonus
Material



Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):

14

Bonus
Material



Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
        return abs(x - y) <= abs(x) * tolerance

14

Bonus
Material



Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
        return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):

14

Bonus
Material



Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
        return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
        if x == y:

14

Bonus
Material



Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
        return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
        if x == y:
            return True

14

Bonus
Material



Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
        return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
        if x == y:
            return True
        return approx_eq_1(x, y) or approx_eq_2(x, y)

14

Bonus
Material



Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
        return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
        if x == y:
            return True
        return approx_eq_1(x, y) or approx_eq_2(x, y)

14

or approx_eq_2(y,x)

Bonus
Material



Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
        return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
        if x == y:
            return True
        return approx_eq_1(x, y) or approx_eq_2(x, y)

>>> def near(x, f, g):

14

or approx_eq_2(y,x)

Bonus
Material



Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
        return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
        if x == y:
            return True
        return approx_eq_1(x, y) or approx_eq_2(x, y)

>>> def near(x, f, g):
        return approx_eq(f(x), g(x))

14

or approx_eq_2(y,x)

Bonus
Material



Moral of the Story

15



Moral of the Story

Life was better when numbers were just numbers!

15



Moral of the Story

Life was better when numbers were just numbers!

Having to know the details of an abstraction:

15



Moral of the Story

Life was better when numbers were just numbers!

Having to know the details of an abstraction:

• Makes programming harder and more knowledge-intensive

15



Moral of the Story

Life was better when numbers were just numbers!

Having to know the details of an abstraction:

• Makes programming harder and more knowledge-intensive

• Creates opportunities to make mistakes

15



Moral of the Story

Life was better when numbers were just numbers!

Having to know the details of an abstraction:

• Makes programming harder and more knowledge-intensive

• Creates opportunities to make mistakes

• Introduces dependencies that prevent future changes

15



Moral of the Story

Life was better when numbers were just numbers!

Having to know the details of an abstraction:

• Makes programming harder and more knowledge-intensive

• Creates opportunities to make mistakes

• Introduces dependencies that prevent future changes

15

Coming Soon: Data Abstraction


