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• The real prize: honor and glory
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Keegan Mann, 
Yan Duan & Ziming Li, 

Brian Prike & Zhenghao Qian, 
Parker Schuh & Robert Chatham

Fall 2011 Winners
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>>> from operator import mul
>>> def square(let):
        return mul(let, let)
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Write the test of a function before you write the function

5

A test will clarify the (one) job of the function

Your tests can help identify tricky edge cases

Develop incrementally and test each piece before moving on

You can't depend upon code that hasn't been tested

Run your old tests again after you make new changes

Practical 
guidance
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Function Decorators

(demo)

6

@trace1
def triple(x):
    return 3 * x

is identical to

def triple(x):
    return 3 * x
triple = trace1(triple)

Decorated 
function

Why not 
just use 
this?

Function 
decorator
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• Square takes one argument.

• Square has the intrinsic name square.

• Square computes the square of a number.

• Square computes the square by calling mul.

7

def square(x):
    return pow(x, 2)

def square(x):
    return mul(x, x-1) + x

If the name “square” were bound to a built-in function, 
sum_squares would still work identically 

Yes

No

Yes

No

What does sum_squares need to know about square?

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)
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Python Objects

In Python, every value is an object.

10

• All objects have attributes

• A lot of data manipulation happens through methods

• Functions do one thing; objects do many related things

• Use built-in objects to introduce classic ideas

• Create our own objects using the built-in object system

• Implement an object system using built-in objects

The next four weeks:
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Properties of native data types:

1. There are primitive expressions that evaluate to native 
objects of these types.

2. There are built-in functions, operators, and methods to 
manipulate these objects.
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In Python, every object has a type.

>>> type(today)
<class 'datetime.date'>
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Numeric Data Types

Numeric types in Python:

>>> type(2)

<class 'int'>

>>> type(1.5)

<class 'float'>

>>> type(1+1j)

<class 'complex'>

12

Represents integers
exactly

Represents real numbers 
approximately

(demo)
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>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
        return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
        if x == y:
            return True
        return approx_eq_1(x, y) or approx_eq_2(x, y)

>>> def near(x, f, g):
        return approx_eq(f(x), g(x))

14

or approx_eq_2(y,x)
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Having to know the details of an abstraction:

• Makes programming harder and more knowledge-intensive

• Creates opportunities to make mistakes

• Introduces dependencies that prevent future changes
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Coming Soon: Data Abstraction


