61A Lecture 6

Friday, September 7

Lambda Expressions Versus Def Statements

>

square = lambda x: x * X VS def square(x):

return x * x
* Both create a function with the same arguments & behavior

¢ Both of those functions are associated with the environment
in which they are defined

¢ Both bind that function to the name 'square"

* Only the def statement gives the function an intrinsic name

Global frame func;'—)::(x) Global frame func square(x)
square A square
N The Greek
letter lambda S
x 2 x 2
Return Return
value e value &

Newton's Method Background

Finds approximations to zeroes of differentiable functions

: { A "zero"

25 (] YN 2l5 ¢
WX

¥<X:1.414213562373095)

Application: a method for (approximately) computing square
roots, using only basic arithmetic.

The positive zero of f(x) = x2 - a is Va

Lambda Expressions

An expression: this one
>>> ten = 10 evaluates to a number

>>> square

Also an expression:
evaluates to a function

>>> square =!

B ﬁi: Notice: no "return")

>>> square(4)
16

(Must be a single expression)

Lambda expressions are rare in Python, but important in general

Function Currying

def make_adder(n):
return lambda k: n + k

! >>> make_adder(2)(3)’
H 5 i

i >>> add(2, 3) ; Therg's a_general
5 H relationship between
i : these functions

Currying: Transforming a multi-argument function into a
single-argument, higher-order function.

Fun Fact: Currying was discovered by Moses Schénfinkel and

later re-discovered by Haskell Curry.
Schonfinkeling?

Newton's Method

=f(x)/f'(x)

Begin with a function f and w(

an initial guess x

1. Compute the value of f at the guess: f(x)

2. Compute the derivative of f at the guess: f'(x)

f(x)
T (x)

3. Update guess to be: x

Visualization of Newton's Method

(Demo)

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update: X =

i: Babylonian Method)

Implementation questions:
What guess should start the computation?

How do we know when we are finished?

Iterative Improvement

[

(Demo)
def golden update(guess): def golden_ test(guess):
return 1/qguess + 1 return guess * guess == guess + |

def iteriimproveaﬁg

;}guess=;, max_updates=1000):
"""Iteratively i

éss with update until done returns a true value.

guess —— An initial guess
update —— A function from guesses to guesses; updates the guess
done -— A function from guesses to boolean values; tests if guess is good

>>> iter_improve(golden_update, golden_test)
1.618033988749895

k=0

while not done(guess) and k < max_updates:
guess = update(guess)
k=k+ 1

return guess

Using Newton's Method

How to find the square root of 27

1.618033988749895

h(x) = x2 = (x+1)

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Update: X—= ' x

Implementation questions:
What guess should start the computation?

How do we know when we are finished?

Derivatives of Single-Argument Functions

F1(x) = Jim T O0HN) = T(X)
h—0 h

Approximating Derivatives Implementing Newton's Method

def newton_update(f):
"""Return an update function for f using Newton's method."""

def update(x):
return x - £(x) /!

return update)

. A
Could be replaced with
the exact derivative

def approx_derivative(f, x, delta=le-5):
"""Return an approximation to the derivative of f at x.
df = f(x +/delta) - f(x)
(Demo) return df/déIEE'w[

Limit approximated
by a small value

def find root(f, guess=1):
"""Return a guess of a zero of the function f, near guess.

>>> from math import sin
>>> find root(lambda y: sin(y), 3)
3.141592653589793

Definition of a
function zero
V.

return iter_improve(newton_update(f),/ guess)

