61A Lecture 6

Friday, September 7

Lambda Expressions

An expression: this one
>>> ten = 10 evaluates to a number

>>> Square

I
X
*
X

Also an expression:
evaluates to a function

..........

>>> square =:lambda Xx: X * X :
P RRLECETTEEPEEP ' i Notice: no "return" :)
A function

with formal parameter X

>>> square(4) N\
16 (Must be a single expression]

Lambda expressions are rare in Python, but important in general

Lambda Expressions Versus Def Statements

0,
square = lambda x: X * X

def square(x):
VS return x x X

e Both create a function with the same arguments & behavior

e Both of those functions are associated with the environment
in which they are defined

e Both bind that function to the name "square"

e Only the def statement gives the function an intrinsic name

Global frame func;')\‘:(x) Global frame func square(x)
('square‘; /\ square
N The Greek
letter lambda >quare
X |2 X |2
Return 4 Return 4

value value

Function Currying

def make_adder(n):
return lambda k: n + Kk

. >>> make_adder(2) (3):

. 5 .
. >>> add(2, 3) g Therg's a_general
. 5 ; relationship between

these functions

Currying: Transforming a multi-argument function into a
single—-argument, higher-order function.

Fun Fact: Currying was discovered by Moses Schonfinkel and
later re-discovered by Haskell Curry.

[Schénfinkeling?]

Newton's Method Background

Finds approximations to zeroes of differentiable functions

E / 1 1
./‘ A "zero

\)

o

T

o
N

A\

N

o

Y

X

J x=1.414213562373095 |

Application: a method for (approximately) computing square
roots, using only basic arithmetic.

The positive zero of f(x) = x2 — a is +va

Newton's Method

Begin with a function f and w(

—-f(x)/f"'(x) j
an initial gquess X . 25 V // L///
< prd

1. Compute the value of f at the guess: f(x)

2. Compute the derivative of f at the guess: f'(x)

3. Update gquess to be: x-——jﬁﬁl-

f'(x)

Visualization of Newton's Method

(Demo)

http://en.wikipedia.orqg/wiki/File:NewtonIteration Ani.qif

Using Newton's Method

How to find the square root of 27

z . >>> find_zero(f)
1.4142135623730951 f(x) = x2 - ZJ

.

1

How to find the log base 2 of 10247

>>>:g = lambda x: pow(2, x) - 1024

--

e >>> find Zero(g)
Bl 10.0
j g(x)

-~
A}
L}
4

I
N
X
I
(B
S
N
N
—__

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update: X =

Yt Babylonian Method)

Implementation questions:
What guess should start the computation?

How do we know when we are finished?

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Update: X = X2

Implementation questions:
What guess should start the computation?

How do we know when we are finished?

lterative Improvement

(Demo)
def golden update(guess): def golden_test(guess):
return 1/gqguess + 1 return guess * guess == guess + |

def

guess —— An initial guess
update —— A function from guesses to guesses; updates the guess
done —— A function from guesses to boolean values; tests if guess is good

>>> iter improve(golden update, golden test)
1.618033988749895

k =0

while not done(guess) and k < max updates:
guess = update(guess)
k =k + 1

return guess

Derivatives of Single-Argument Functions

f(x+h) - f(x)

f'(x) = lim
h—0 h
\ o [,
\ [[
2 \ -1 0 1 // 2
\ /'// X +h=1.1)
-1 % [—

o7

/

(Demo)

http://en.wikipedia.org/wiki/File:Graph of sliding derivative line.qgif

Approximating Derivatives

(Demo)

Implementing Newton's Method

def

def approx derivative(f, x, delta=le-5):

def

newton update(f):
"""Return an update function for f using Newton's method.
def update(X): e .

Could be replaced with
the exact derivative

return update

"""Return an_approximation to the derivative of f at x.
df = f(x +: delta) - f(x)

return df/delta .
Limit approximated
by a small value

find root(f, guess=1):
"""Return a guess of a zero of the function f, near guess.

>>> from math import sin

>>> find root(lambda y: sin(y), 3) (: Detinition of a J

3.141592653589793 function zero
nmon V
