61A Lecture 4

Friday, August 31

Practical Guidance: the Art of the Function

Give each function exactly one job.

Don’t repeat yourself (DRY). Implement a computational
process just once, but execute it many times.

A & V- gl .=
- = 2 g ~H

1| [3+sint+cosu
0= 2t 1=0...27,u=0...21
sinu+2cost

Generalizing Over Computational Processes

The common structure among functions may itself be a
computational process, rather than a number.

5

>

=142+3+4+5 =15

k=1

=134+23433+4%4+53 =295

8§ 8 8 8 8
7§+£+®+@+ﬁ = 3.04

The Fibonacci Sequence

def fib(n):
"""Compute the nth Fibonacci number, for n >= 2."""
pred, curr =0, 1 # First two Fibonacci numbers

k =2 # Tracks which Fib number is curr
while k < n:

p pred, curr = curr, pred + curr
k=k+1

return curr

Example: http://goo.gl/dcaf@

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:
r

Area:

Finding common structure allows for shared implementation

Summation Example

.. . Function of a single
def cube(k): :{_argument (not called term)
return pow(k i

h K A formal parameter that
def summation(n, it will be bound to a function
"""Sum the fir¥§t n terms of a sequence.

_>>> summation(5, {cube))

The cube function is passed
as an argument value

total, k = 0, 1

while k <= n:
total, k = total + t

return total

(The function bound to termj

(0 < T < o < 7w (8 e G5 gets called here

Locally Defined Functions

Functions defined within other function bodies
are bound to names in the local frame

[

A function that
returns a function

>>>(add three = mal der (3)} The name add_three is
> ddd_tnreets) bound to a function

)

idef adder(k): }
L return(k ¥H; ARtocal
return adder ’ def statement

Can refer to names in]

the enclosing function

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as
values in our programming language.

Higher-order function: A function that takes a function as an

argument value or returns a function as a return value

Higher-order functions:

Express general methods of computation
Remove repetition from programs

Separate concerns among functions

Call Expressions as Operator Expressions

make_adder(1) (2)

make_adder(1) (2

—_—

Operator

—_———

Operand 0

An expression

An expression
that evaluates
to any value

that evaluates
to a function

def make_adder(n):
def adder(k):
return k + n
return adder
make_adder(1) (2)

Pig Introduction

(Demo)

