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The Fibonacci Sequence

def fib(n):
""Compute the nth Fibonacci number, for n >= 2.,"""
pred, curr = 0, 1 # First two Fibonacci numbers
k = 2 # Tracks which Fib number is curr
while k < n:
pred, curr = curr, pred + curr
k =k +1

return curr

Example: http://goo.gl/dcaf@
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Give each function exactly one job.
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Give each function exactly one job.

VS

Don’t repeat yourself (DRY). Implement a computational
process just once, but execute it many times.
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Practical Guidance: the Art of the Function

Give each function exactly one job.

VS

Don’t repeat yourself (DRY). Implement a computational
process just once, but execute it many times.
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Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

-----------

Area: 2 T T

-----------

Finding common structure allows for shared implementation
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The common structure among functions may itself be a
computational process, rather than a number.
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Generalizing Over Computational Processes

The common structure among functions may itself be a
computational process, rather than a number.
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Summation Example

def cube(k):
return pow(k, 3)

def summation(n, term):
"""Sum the first n terms of a sequence.

>>> summation(5, cube)
225

total, k = total + term(k), k + 1
return total



Summation Example

______________________________________________________ X Function of a single
def cube (k) < _argument (not called term)
return pow(k, 3)

------------------------------------------------------

def summation(n, term):
"""Sum the first n terms of a sequence.

>>> summation(5, cube)
225

total, k

total, k = total + term(k), k + 1
return total



Summation Example

_____________________________________________ i Function of a single
def cube (k) < _argument (not called term)

---------

return pow(k, 3)

nmmm M~ . 11l . g8 smm=mgea=’

Sum the firs§t n terms of a sequence.

""""""""" _ "'""'""""::::::" A formal parameter that
summation(n, itermX will be bound to a function

>>> summation(5, cube)
225

total, k = 0, 1
while k <= n:

total, k = total + term(k), k + 1
return total



Summation Example

def

---------

_____________________________________________ i Function of a single
cube(k): < _argument (not called term)

return pow(k, 3)

""""""""" _""""""""f::::f' A formal parameter that
summation(n, term will be bound to a function

Sum the first n Terms of a sequence.

>>> summation(5, cube)
225
total, k = 0, 1
while k <= n:
total, k = total + term(k);, k + 1

-----------------

return total A

The function bound to term
gets called here




Summation Example

def

---------

_____________________________________________ i Function of a single
cube(k): < _argument (not called term)

return pow(k, 3)

""""""""" _""""""""f::::f' A formal parameter that
summation(n, term will be bound to a function

Sum the first n Terms of a sequence.

----------

>>> summation(5, icube))

----------

225
UL The cube function is passed
total, k = as an argument value
4 4
while k <= n:
total, k = total + term(k);, k +

-----------------

return total A

The function bound to term
gets called here
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T i Function of a single

- def cube(k): < _argument (not called term)
i return pow(k, 3)

S T A formal parameter that
def summation(n, {termX will be bound to a function
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Sum the first n Terms of a sequence.

----------
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total, k = 0, as an argument value

while k <= n:

-----------------
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def make adder(n):
"""Return a function that takes one argument k and returns k + n.

>>> add three = make adder(3)
>>> add three(4)
7
def adder(k):
return k + n
return adder
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Locally Defined Functions

Functions defined within other function bodies
are bound to names in the local frame

A function that
returns a function

----------------

-----------------------------------------

>>>(add_three = make_adder(3): The name add three is
7>> ddd_tnrestd) bound to a function
‘def adder(k):

! returnik + nu A local

i‘éi:'tii:h"'a'a'ci'e'f"/\'" def statement

Can refer to names 1in
the enclosing function
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Call Expressions as Operator Expressions

make_adder(1) (2)

make_adder(1)

Operator
AN

-

\_

N
An expression

that evaluates
to a function

J

(

2 )

Operand 0
/\

-

\_

An expression
that evaluates
to any value

~

J

def make_adder(n):
def adder(k):

return kK + n

return adder
make_adder(1) (2)
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The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as
values 1in our programming language.

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Higher—-order functions:
e Express general methods of computation
e Remove repetition from programs

e Separate concerns among functions
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