61A Lecture 4

Friday, August 31

The Fibonacci Sequence

Example: http://goo.gl/dcaf@

The Fibonacci Sequence

Example: http://goo.gl/dcaf@

The Fibonacci Sequence

def fib(n):
""Compute the nth Fibonacci number, for n >= 2.,"""
pred, curr = 0, 1 # First two Fibonacci numbers
k = 2 # Tracks which Fib number is curr
while k < n:
pred, curr = curr, pred + curr
k =k +1

return curr

Example: http://goo.gl/dcaf@

The Fibonacci Sequence

é% 7
fib 2 1
n ’ ‘él 3
pred ’ 5,
K RS

def fib(n):
""Compute the nth Fibonacci number, for n >= 2.,"""
pred, curr = 0, 1 # First two Fibonacci numbers

k = 2 # Tracks which Fib number 1is curr

while k < n:

pred, curr = curr, pred + curr
k =k +1

return curr

Example: http://goo.gl/dcaf@

The Fibonacci Sequence

fib J’],2
n/ ’3

pred
curr

def fib(n):
""Compute the nth Fibonacci number, for n >= 2.,"""
pred, curr = 0, 1 # First two Fibonacci numbers

k = 2 # Tracks which Fib number 1is curr

while k < n:

pred, curr = curr, pred + curr
k =k +1

return curr

Example: http://goo.gl/dcaf@

The Fibonacci Sequence

fib J’],2
n/ ’3

pred
curr

def fib(n):
" Compute the nth Fibonacci number, for n >= 2.,"""
pred, curr = 0, 1 # First two Fibonacci numbers

k = 2 # Tracks which Fib number 1is curr

while k < n:

p pred, curr = curr, pred + curr
k =k +1

return curr

Example: http://goo.gl/dcaf@

The Fibonacci Sequence

9, 7
fib 4
n ,’/,//”’////////7 ’ ‘él S
pred / ’ 5
curr 78
’ RS

def fib(n):
" Compute the nth Fibonacci number, for n >= 2.,"""
pred, curr = 0, 1 # First two Fibonacci numbers

k = 2 # Tracks which Fib number 1is curr

while k < n:

p pred, curr = curr, pred + curr
k =k +1

return curr

Example: http://goo.gl/dcaf@

The Fibonacci Sequence

9, 7
fib 4
n _,——’,,————””’—————? i ‘él S
pred ———————_____,_———“"——————’—)’)
curr 78
’ R

def fib(n):
" Compute the nth Fibonacci number, for n >= 2.,"""
pred, curr = 0, 1 # First two Fibonacci numbers

k = 2 # Tracks which Fib number 1is curr

while k < n:

p pred, curr = curr, pred + curr
k =k +1

return curr

Example: http://goo.gl/dcaf@

The Fibonacci Sequence

fib 2 1

pred __———_________________—————”"——”)
&

curr

def fib(n):
" Compute the nth Fibonacci number, for n >= 2.,"""
pred, curr = 0, 1 # First two Fibonacci numbers

k = 2 # Tracks which Fib number 1is curr

while k < n:

p pred, curr = curr, pred + curr
k =k +1

return curr

Example: http://goo.gl/dcaf@

The Fibonacci Sequence

éz 7
fib 2 1
n ’ 2’ 3
pred g 5
curr . ’ 8’
’ 43

def fib(n):
" Compute the nth Fibonacci number, for n >= 2.,"""
pred, curr = 0, 1 # First two Fibonacci numbers

k = 2 # Tracks which Fib number 1is curr

while k < n:

p pred, curr = curr, pred + curr
k =k +1

return curr

Example: http://goo.gl/dcaf@

Practical Guidance: the Art of the Function

1IoN

the Art of the Functi

Practical Guidance

},t=0...2:r,u=0...2:t

= .
s 72}
© ©
? ~&

—

= ol
7%
v =
+ =
o o
| I

Il
——
ST W

1IoN

the Art of the Functi

Practical Guidance

Give each function exactly one job.

}.t=0...2:r, u=0...2m

3+sint+cosu
2t
sinu+2cost

|

ro
0

1IoN

the Art of the Functi

Practical Guidance

Give each function exactly one job.

wn
>

},t=0...2ﬂ, u=0...2m

3+sint+cosu
2t
sinu+2cost

|

ro
0

Practical Guidance: the Art of the Function

Give each function exactly one job.

VS

Don’t repeat yourself (DRY). Implement a computational
process just once, but execute it many times.

sinu+2cost

ro 3+sint+cosu
0= 2t L =0... 27, u=0...271

Practical Guidance: the Art of the Function

Give each function exactly one job.

VS

Don’t repeat yourself (DRY). Implement a computational
process just once, but execute it many times.

3+sint+cosu
2t =0...27.u=0...271
sinu+2cost

Practical Guidance: the Art of the Function

Give each function exactly one job.

VS

Don’t repeat yourself (DRY). Implement a computational
process just once, but execute it many times.

Define functions generally.

3+sint+cosu
2t

sinu+2cost

r=0... 27, u=0...271

Practical Guidance: the Art of the Function

Give each function exactly one job.

VS

Don’t repeat yourself (DRY). Implement a computational
process just once, but execute it many times.

Define functions generally.

1'% @ Mo @iy wE

3+sint+cosu
2t

sinu+2cost

r=0... 27, u=0...271

Generalizing Patterns with Arguments

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

O

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

O

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

O

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

O

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area:

O

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area: T2

O

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area: T2 ﬂ'-T2

O

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

PN

Shape:
r \\\1;~/’///
3V 3
Area: /r2 T - 7’*2 T\/_ . ,’,,2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

PN

Shape:
i W
3V 3
Area: 1 .7~2 7'(-'r2 T\/_ .7«2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

PN

Shape:
r \\\1;~/’///
3V 3
Area: 1 7«2 T - r2 T\/_ . 7«2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

PN

Shape:
r
r \\\\\V///’/
'¢-~\l 2 'o'\‘ 2 3\/§ 2
Area: .‘1 r 7'(" r T e

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area: 2 Cﬁ}-r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area: 2 T T

Finding common structure allows for shared implementation

Generalizing Over Computational Processes

Generalizing Over Computational Processes

The common structure among functions may itself be a
computational process, rather than a number.

Generalizing Over Computational Processes

The common structure among functions may itself be a
computational process, rather than a number.

5
}:k:1+2+3+4+5

— 15
k=1
5)
}:M%:ﬁ+2?+§+43+§ — 295
k=1
° 8 8 8 8 8 8
_ 6,6 6 6 & — 3.04
E;Mk_a.@k_n 3735 799 " 195 T 323

k=1

Generalizing Over Computational Processes

The common structure among functions may itself be a
computational process, rather than a number.

5
» Ui=1+42+43+4+5 =15
k=1
5)
Zk3:13+23+33+43+53 — 295
k=1
° 8 8 8 8 8 8
_ %, % ° 5 /. ° — 3.04
§(4k_3).(4k_1) 3735 799 " 195 T 323

k=1

Generalizing Over Computational Processes

The common structure among functions may itself be a
computational process, rather than a number.

5
» Ui=1+42+43+4+5 =15
k=1
5 ...
» Uli=1% 428 4 3% 4 47 4 57 = 225
k=1
° 8 8 8 8 8 8
_ ¢, ., 6 5 — 3.04
2(41@—3)-(%—1) 3735 799 " 195 T 323

k=1

Generalizing Over Computational Processes

The common structure among functions may itself be a
computational process, rather than a number.

5
» Ui=1+42+43+4+5 =15
k=1
5 ...
» Uli=1% 428 4 3% 4 47 4 57 = 225
k=1
o TR 8 8 8 8 8
T T T B = 3.04
Z: T3735 99 195 323

...............................

Summation Example

def cube(k):
return pow(k, 3)

def summation(n, term):
"""Sum the first n terms of a sequence.

>>> summation(5, cube)
225

total, k = total + term(k), k + 1
return total

Summation Example

__ X Function of a single
def cube (k) < _argument (not called term)
return pow(k, 3)

--

def summation(n, term):
"""Sum the first n terms of a sequence.

>>> summation(5, cube)
225

total, k

total, k = total + term(k), k + 1
return total

Summation Example

___ i Function of a single
def cube (k) < _argument (not called term)

return pow(k, 3)

nmmm M~ . 11l . g8 smm=mgea=’

Sum the firs§t n terms of a sequence.

""""""""" _ "'""'""""::::::" A formal parameter that
summation(n, itermX will be bound to a function

>>> summation(5, cube)
225

total, k = 0, 1
while k <= n:

total, k = total + term(k), k + 1
return total

Summation Example

def

___ i Function of a single
cube(k): < _argument (not called term)

return pow(k, 3)

""""""""" _""""""""f::::f' A formal parameter that
summation(n, term will be bound to a function

Sum the first n Terms of a sequence.

>>> summation(5, cube)
225
total, k = 0, 1
while k <= n:
total, k = total + term(k);, k + 1

return total A

The function bound to term
gets called here

Summation Example

def

___ i Function of a single
cube(k): < _argument (not called term)

return pow(k, 3)

""""""""" _""""""""f::::f' A formal parameter that
summation(n, term will be bound to a function

Sum the first n Terms of a sequence.

>>> summation(5, icube))

225
UL The cube function is passed
total, k = as an argument value
4 4
while k <= n:
total, k = total + term(k);, k +

return total A

The function bound to term
gets called here

Summation Example

T i Function of a single

- def cube(k): < _argument (not called term)
i return pow(k, 3)

S T A formal parameter that
def summation(n, {termX will be bound to a function

nmmm M~ . 11l . g8 smm=mgea=’

Sum the first n Terms of a sequence.

‘hm'-'-i'"'-'"“' [ﬂ/\\e cube function 1is passedJ
total, k = 0, as an argument value

while k <= n:

return total A
The function bound to termJ

[0 + 13 + 23 + 33 4+ 43 4+ 55 J [gets called here

Locally Defined Functions

Locally Defined Functions

Functions defined within other function bodies
are bound to names in the local frame

Locally Defined Functions

Functions defined within other function bodies
are bound to names in the local frame

def make adder(n):
"""Return a function that takes one argument k and returns k + n.

>>> add three = make adder(3)
>>> add three(4)
7
def adder(k):
return k + n
return adder

Locally Defined Functions

Functions defined within other function bodies
are bound to names in the local frame

A function that
returns a function

def ‘make adderin):

nrrReturn a function that takes one argument k and returns k + n.

>>> add three = make adder(3)
>>> add three(4)
7
def adder(k):
return k + n
return adder

Locally Defined Functions

Functions defined within other function bodies
are bound to names in the local frame

A function that
returns a function

>>>(add_three = make_adder(3): The name add three is
7>> ddd_tnrestd) bound to a function

def adder(k):
return k + n
return adder

Locally Defined Functions

Functions defined within other function bodies
are bound to names in the local frame

A function that
returns a function

>>>(add_three = make_adder(3): The name add three is
7>> ddd_tnrestd) bound to a function

' return k + n A local

return adder def statement

Locally Defined Functions

Functions defined within other function bodies
are bound to names in the local frame

A function that
returns a function

>>>(add_three = make_adder(3): The name add three is
7>> ddd_tnrestd) bound to a function
‘def adder(k):

! returnik + nu A local

i‘éi:'tii:h"'a'a'ci'e'f"/\'" def statement

Can refer to names 1in
the enclosing function

Call Expressions as Operator Expressions

make_adder(1) (2)

def make_adder(n):
def adder(k):
return k + n
return adder
make_adder(1) (2)

Call Expressions as Operator Expressions

make_adder(1) (2)

make_adder(1) (2)

def make_adder(n):
def adder(k):
return k + n
return adder
make_adder(1) (2)

Call Expressions as Operator Expressions

make_adder(1) (2)

make_adder(1) (2)

Operator

def make_adder(n):
def adder(k):
return k + n
return adder
make_adder(1) (2)

Call Expressions as Operator Expressions

make_adder(1) (2)

make_adder(1) (2)

Operator Operand 0

def make_adder(n):
def adder(k):
return k + n
return adder
make_adder(1) (2)

Call Expressions as Operator Expressions

make_adder(1) (2)

make_adder(1) (2)
Operator Operand 0
/\
4)

An expression
that evaluates

to a function
_ J

def make_adder(n):
def adder(k):
return k + n
return adder
make_adder(1) (2)

Call Expressions as Operator Expressions

make_adder(1) (2)

make_adder(1)

Operator
AN

-

_

N
An expression

that evaluates
to a function

J

(

2)

Operand 0
/\

-

_

An expression
that evaluates
to any value

~

J

def make_adder(n):
def adder(k):

return kK + n

return adder
make_adder(1) (2)

The Purpose of Higher-Order Functions

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as
values in our programming language.

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as
values 1in our programming language.

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as
values 1in our programming language.

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Higher—-order functions:

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as
values 1in our programming language.

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Higher—-order functions:

e Express general methods of computation

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as
values 1in our programming language.

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Higher—-order functions:
e Express general methods of computation

e Remove repetition from programs

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as
values 1in our programming language.

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Higher—-order functions:
e Express general methods of computation
e Remove repetition from programs

e Separate concerns among functions

Pig Introduction

(Demo)

