
61A Lecture 1

Friday, August 24, 2012

Welcome to Berkeley Computer Science!

2

The Course Staff

3

0 1 2 3 4 5 years

TAs run sections, labs, and also everything else

Readers are your personal programming mentors
Lab Assistants ensure that you don’t get stuck

What is Computer Science?

Systems

Artificial Intelligence

Graphics

Security

Networking

Programming Languages

Theory

Scientific Computing

...

4

Computer Vision

Planning

Robotics

Natural Language Processing

...

What is 61A?

• A course about managing complexity

 Mastering abstraction

 Not about 1’s and 0’s

• An introduction to Python

 All the features we really need: introduced today

 Understanding through implementation

 Programs that run other programs: meta-evaluation

• A challenging course that will demand a lot of you

5

What is 61A?

6

Plone Conference. Photo courtesy of Kriszta Szita

Alternatives to 61A

7

CS 10: The Beauty and Joy of Computing

CS 61AS: Self-paced 61A

Course Policies

The staff is here to make you successful

8

The purpose of this course is to help you learn

All the details are online:

http://inst.eecs.berkeley.edu/~cs61A/fa12/about.html

Collaboration

• Discuss everything with each other

• EPA: Effort, participation, and altruism
• Homework can be completed with a partner

• Projects should be completed with a partner

• Find a project partner in your section!

9

• One simple rule: don’t share code

• Copying project solutions is a serious offense!

The limits of collaboration

Announcements

• Next week, both section and lab will meet in the lab rooms.

• Homework 1 is posted! All homework is graded on effort.

• If you are on the waitlist, still complete assignments!

• Midterms are on 9/19 and 10/24. Final exam is on 12/13.

• Read the lecture notes before you come to lecture!

10

18 + 69
6

23 p
3493161

sin⇡

f(x)
100X

i=1

i

|� 1869|

✓
69

18

◆

Types of expressions

11

An expression

describes a computation

and evaluates to a value

Call Expressions in Python

All expressions can use function call notation

(Demo)

12

Anatomy of a Call Expression

13

Evaluation procedure for call expressions:

add (2 , 3)

Operator Operand 0 Operand 1

Operators and operands are expressions

1. Evaluate the operator and operand subexpressions

2. Apply the function that is the value of the operator
subexpression to the arguments that are the values of
the operand subexpression

So they evaluate to values

208
mul(add(2, mul(4, 6)), add(3, 5))

add(2, mul(4, 6))

Evaluating Nested Expressions

14

26mul

add 2
mul(4, 6)

mul 4 6

24

add(3, 5)

add 3 5

8

Data, Functions, and Interpreters

Data: The things that programs fiddle with

15

2
“The Art of Computer Programming”

Donald Knuth
Shakespeare’s 37 plays

Functions: Rules for manipulating data

Add up numbers
Pronounce someone’s name

Count the words in a line of text

(Ka-NOOTH)

Interpreter: An implementation of the procedure for evaluation

