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0 1 2 3 4 5 years

TAs run sections, labs, and also everything else

Readers are your personal programming mentors
Lab Assistants ensure that you don’t get stuck
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What is 61A?

• A course about managing complexity

 Mastering abstraction

 Not about 1’s and 0’s

• An introduction to Python

 All the features we really need: introduced today

 Understanding through implementation

 Programs that run other programs: meta-evaluation

• A challenging course that will demand a lot of you
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Plone Conference.  Photo courtesy of Kriszta Szita
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CS 10: The Beauty and Joy of Computing

CS 61AS: Self-paced 61A
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The purpose of this course is to help you learn

All the details are online:

http://inst.eecs.berkeley.edu/~cs61A/fa12/about.html
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Collaboration

• Discuss everything with each other

• EPA: Effort, participation, and altruism
• Homework can be completed with a partner

• Projects should be completed with a partner

• Find a project partner in your section!

9

• One simple rule: don’t share code

• Copying project solutions is a serious offense!

The limits of collaboration
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Call Expressions in Python

All expressions can use function call notation

(Demo)
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Anatomy of a Call Expression

13

Evaluation procedure for call expressions:

add      (      2       ,      3       )

Operator Operand 0 Operand 1

Operators and operands are expressions

1. Evaluate the operator and operand subexpressions

2. Apply the function that is the value of the operator 
subexpression to the arguments that are the values of 
the operand subexpression

So they evaluate to values
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Data: The things that programs fiddle with

15
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“The Art of Computer Programming”

Donald Knuth
Shakespeare’s 37 plays

Functions: Rules for manipulating data

Add up numbers
Pronounce someone’s name

Count the words in a line of text

(Ka-NOOTH)

Interpreter: An implementation of the procedure for evaluation


