61A Lecture 1

Friday, August 24, 2012

Welcome to Berkeley Computer Science!

The Course Staff

John DeNero

The Course Staff

Google

John DeNero

The Course Staff

Google
 Cal

John DeNero

The Course Staff

John DeNero

The Course Staff

John DeNero
TAs run sections, labs, and also everything else

The Course Staff

John DeNero
TAs run sections, labs, and also everything else

Akihiro Matsukawa Email: cs61a-tj

Allen Nguyen
Email: cs61a-tk

Hamilton Nguyen Email: cs61a-tf

Stephen Martinis
Email: cs61a-ty

Phillip Carpenter
Email: cs61a-t|

Andrew Nguyen
Email: cs61a-tg

Steven Tang Email: cs61a-tx

Albert Wu
Email: cs61a-ti

Varun Pai
Email: cs61a-tj

Julia Oh
Email: cs61a-th

Joy Jeng
Email: cs61a-te

Shu Zhong
Email: cs61a-td

Keegan Mann Email: cs61a-tc

The Course Staff

John DeNero
TAs run sections, labs, and also everything else

Akihiro Matsukawa Email: cs61a-tj

Allen Nguyen Email: cs61a-tk

Hamilton Nguyen Email: cs61a-tf

Stephen Martinis
Email: cs61a-ty

Phillip Carpenter
Email: cs61a-t|

Andrew Nguyen
Email: cs61a-tg

Steven Tang Email: cs61a-tx

Albert Wu
Email: cs61a-ti

Varun Pai
Email: cs61a-tj

Julia Oh
Email: cs61a-th

Joy Jeng
Email: cs61a-te

Shu Zhong
Email: cs61a-td

Readers are your personal programming mentors

The Course Staff

John DeNero
TAs run sections, labs, and also everything else

Akihiro Matsukawa
Email: cs61a-tj

Allen Nguyen Email: cs61a-tk

Hamilton Nguyen Email: cs61a-tf

Stephen Martinis
Email: cs61a-ty

Phillip Carpenter
Email: cs61a-tl

Andrew Nguyen
Email: cs61a-tg

Steven Tang Email: cs61a-tx

Albert Wu
Email: cs61a-ti

Varun Pai Email: cs61a-tj

Julia Oh
Email: cs61a-th

Joy Jeng
Email: cs61a-te

Shu Zhong
Email: cs61a-td

Readers are your personal programming mentors
Lab Assistants ensure that you don't get stuck

What is Computer Science?

What is Computer Science?

Systems

What is Computer Science?

Systems

Artificial Intelligence

What is Computer Science?

Systems

Artificial Intelligence
Graphics

What is Computer Science?

Systems

Artificial Intelligence
Graphics
Security

What is Computer Science?

Systems

Artificial Intelligence
Graphics
Security
Networking
Programming Languages
Theory
Scientific Computing

What is Computer Science?

Systems
Artificial Intelligence
Graphics
Security
Networking

Programming Languages
Theory
Scientific Computing

What is Computer Science?

Systems
Artificial Intelligence
Graphics
Security
Networking $\square \square$

Programming Languages
Theory
Scientific Computing

What is Computer Science?

Systems
Artificial Intelligence
Graphics
Security
Networking $\quad\left[\begin{array}{l}\text { Planning } \\ \end{array}\right.$

Programming Languages
Theory
Scientific Computing

What is Computer Science?

Systems
Artificial Intelligence
Graphics Security Networking
:---
Robotics

Programming Languages
Theory
Scientific Computing

What is Computer Science?

| Systems
 Artificial Intelligence
 Graphics
 Security
 Networking
 Programming Languages |
| :--- | :--- |
| Planning
 Theory
 Robotics
 Satural Language Processing |

What is Computer Science?

Systems			
Artificial Intelligence Graphics Security Networking Programming Languages	Planning		
Robotics			
Theory			
Satural Language Processing			
Scientific Computing			

What is Computer Science?

Systems	
Artificial Intelligence	
Graphics Security Networking Programming Languages Theory Scientific Computing	Robotics
Natural Language Processing	

What is 61A?

What is 61A?

- A course about managing complexity

What is 61A?

- A course about managing complexity
- Mastering abstraction

What is 61A?

- A course about managing complexity
- Mastering abstraction
= Not about 1's and 0's

What is 61A?

- A course about managing complexity
- Mastering abstraction
"Not about 1's and 0's
- An introduction to Python

What is 61A?

- A course about managing complexity
- Mastering abstraction
"Not about 1's and 0's
- An introduction to Python

- All the features we really need: introduced today

What is 61A?

- A course about managing complexity
- Mastering abstraction
"Not about 1's and 0's
- An introduction to Python

- All the features we really need: introduced today
- Understanding through implementation

What is 61A?

- A course about managing complexity
- Mastering abstraction
"Not about 1's and 0's
- An introduction to Python

- All the features we really need: introduced today
- Understanding through implementation
- Programs that run other programs: meta-evaluation

What is 61A?

- A course about managing complexity
- Mastering abstraction
"Not about 1's and 0's
- An introduction to Python

- All the features we really need: introduced today
- Understanding through implementation
- Programs that run other programs: meta-evaluation
- A challenging course that will demand a lot of you

What is 61A?

Plone Conference. Photo courtesy of Kriszta Szita

Alternatives to 61A

Alternatives to 61A

CS 61AS: Self-paced 61A

Alternatives to 61A

CS 61AS: Self-paced 61A

CS 10: The Beauty and Joy of Computing

Course Policies

Course Policies

The purpose of this course is to help you learn

Course Policies

The purpose of this course is to help you learn

The staff is here to make you successful

Course Policies

The purpose of this course is to help you learn

The staff is here to make you successful

All the details are online:
http://inst.eecs.berkeley.edu/~cs61A/fa12/about.html

Collaboration

Collaboration

- Discuss everything with each other

Collaboration

- Discuss everything with each other
- EPA: Effort, participation, and altruism

Collaboration

- Discuss everything with each other
- EPA: Effort, participation, and altruism
- Homework can be completed with a partner

Collaboration

- Discuss everything with each other
- EPA: Effort, participation, and altruism
- Homework can be completed with a partner
- Projects should be completed with a partner

Collaboration

- Discuss everything with each other
- EPA: Effort, participation, and altruism
- Homework can be completed with a partner
- Projects should be completed with a partner
- Find a project partner in your section!

Collaboration

- Discuss everything with each other
- EPA: Effort, participation, and altruism
- Homework can be completed with a partner
- Projects should be completed with a partner
- Find a project partner in your section!

The limits of collaboration

Collaboration

- Discuss everything with each other
- EPA: Effort, participation, and altruism
- Homework can be completed with a partner
- Projects should be completed with a partner
- Find a project partner in your section!

The limits of collaboration

- One simple rule: don't share code

Collaboration

- Discuss everything with each other
- EPA: Effort, participation, and altruism
- Homework can be completed with a partner
- Projects should be completed with a partner
- Find a project partner in your section!

The limits of collaboration

- One simple rule: don't share code
- Copying project solutions is a serious offense!

Announcements

Announcements

- Next week, both section and lab will meet in the lab rooms.

Announcements

- Next week, both section and lab will meet in the lab rooms.
- Homework 1 is posted! All homework is graded on effort.

Announcements

- Next week, both section and lab will meet in the lab rooms.
- Homework 1 is posted! All homework is graded on effort.
- If you are on the waitlist, still complete assignments!

Announcements

- Next week, both section and lab will meet in the lab rooms.
- Homework 1 is posted! All homework is graded on effort.
- If you are on the waitlist, still complete assignments!
- Midterms are on $9 / 19$ and 10/24. Final exam is on $12 / 13$.

Announcements

- Next week, both section and lab will meet in the lab rooms.
- Homework 1 is posted! All homework is graded on effort.
- If you are on the waitlist, still complete assignments!
- Midterms are on $9 / 19$ and 10/24. Final exam is on $12 / 13$.
- Read the lecture notes before you come to lecture!

Announcements

- Next week, both section and lab will meet in the lab rooms.
- Homework 1 is posted! All homework is graded on effort.
- If you are on the waitlist, still complete assignments!
- Midterms are on $9 / 19$ and 10/24. Final exam is on $12 / 13$.
- Read the lecture notes before you come to lecture!

Types of expressions

```
An expression
    describes a computation
and evaluates to a value
```


Types of expressions

```
            An expression
    describes a computation
    and evaluates to a value
```

 \(18+69\)

Types of expressions

Types of expressions

Types of expressions

Types of expressions

Types of expressions

> An expression
describes a computation
and evaluates to a value
$18+69$
$\frac{6}{23} \quad \sin \pi$
$\sqrt{3493161}$
$|-1869|$

$$
\sum_{i=1}^{100} i
$$

Types of expressions

Types of expressions

$\sqrt{3493161}$
| - 1869|
$\frac{6}{23} \quad \sin \pi$

Types of expressions

> An expression
> describes a computation and evaluates to a value

Call Expressions in Python

All expressions can use function call notation (Demo)

Anatomy of a Call Expression

Anatomy of a Call Expression

add (

2
3
)

Anatomy of a Call Expression

$\xrightarrow[\text { Operator }]{\text { add }}\left(\begin{array}{l}\text {, }\end{array}\right.$

Anatomy of a Call Expression

Anatomy of a Call Expression

Operators and operands are expressions

Anatomy of a Call Expression

Operators and operands are expressions
So they evaluate to values

Anatomy of a Call Expression

Operators and operands are expressions
So they evaluate to values

Evaluation procedure for call expressions:

Anatomy of a Call Expression

Operators and operands are expressions
So they evaluate to values

Evaluation procedure for call expressions:

1. Evaluate the operator and operand subexpressions

Anatomy of a Call Expression

Operators and operands are expressions
So they evaluate to values

Evaluation procedure for call expressions:

1. Evaluate the operator and operand subexpressions
2. Apply the function that is the value of the operator subexpression to the arguments that are the values of the operand subexpression

Evaluating Nested Expressions

```
mul(add(2, mul(4, 6)), add(3, 5))
```


Evaluating Nested Expressions

Data, Functions, and Interpreters

Data, Functions, and Interpreters

Data: The things that programs fiddle with

Data, Functions, and Interpreters

Data: The things that programs fiddle with 2

Data, Functions, and Interpreters

Data: The things that programs fiddle with
"The Art of Computer Programming"
2

Data, Functions, and Interpreters

Data: The things that programs fiddle with
"The Art of Computer Programming"
2
Donald Knuth

Data, Functions, and Interpreters

Data: The things that programs fiddle with
"The Art of Computer Programming"

2

Shakespeare's 37 plays
Donald Knuth

Data, Functions, and Interpreters

Data: The things that programs fiddle with
"The Art of Computer Programming"

2

$$
\text { Shakespeare's } 37 \text { plays }
$$

Functions: Rules for manipulating data

Data, Functions, and Interpreters

Data: The things that programs fiddle with
"The Art of Computer Programming"
2

$$
\text { Shakespeare's } 37 \text { plays }
$$

Functions: Rules for manipulating data

Add up numbers

Data, Functions, and Interpreters

Data: The things that programs fiddle with
"The Art of Computer Programming"

2

$$
\text { Shakespeare's } 37 \text { plays }
$$

Functions: Rules for manipulating data
Count the words in a line of text

Add up numbers

Data, Functions, and Interpreters

Data: The things that programs fiddle with
"The Art of Computer Programming"

2

$$
\text { Shakespeare's } 37 \text { plays }
$$

Functions: Rules for manipulating data
Count the words in a line of text

Add up numbers
Pronounce someone's name

Data, Functions, and Interpreters

Data: The things that programs fiddle with

> "The Art of Computer Programming"

2

$$
\begin{aligned}
& \text { Donald Knuth Shakespeare's } 37 \text { plays } \\
& \text { (Ka-NOOTH) }
\end{aligned}
$$

Functions: Rules for manipulating data
Count the words in a line of text

Add up numbers
Pronounce someone's name

Data, Functions, and Interpreters

Data: The things that programs fiddle with

> "The Art of Computer Programming"

2

$$
\begin{aligned}
& \text { Donald Knuth } \\
& \text { (Ka-NOOTH) }
\end{aligned}
$$

Shakespeare's 37 plays

Functions: Rules for manipulating data

> Count the words in a line of text

Add up numbers
Pronounce someone's name

Interpreter: An implementation of the procedure for evaluation

