
CS 61A Midterm 1 Study Guide – Page 1

208
mul(add(2, mul(4, 6)), add(3, 5))

add(2, mul(4, 6))
26mul

add 2
mul(4, 6)

mul 4 6

24

add(3, 5)

add 3 5

8

-2
2

-2
None

abs(number):

print(...):

display “-2”

2, 10
1024

pow(x, y):

Pure Functions

Non-Pure Functions

A name evaluates to the value bound to that name in the
earliest frame of the current environment in which that
name is found.

Defining:

Call expression:

square(x):

return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

return mul(x, x)

Def
statement

Formal parameter

Body

Return
expression

(return statement)

operand: 2+2
argument: 4operator: square

function: square

Intrinsic name

4

16Argument

Return value

 <header>:
 <statement>
 <statement>
 ...
 <separating header>:
 <statement>
 <statement>
 ...
 ...

Compound statement

Suite

Clause

Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.

1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then
return to step 1.

Execution rule for while statements:

Execution rule for def statements:

Execution rule for assignment statements:

Evaluation rule for call expressions:

Execution rule for conditional statements: hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single
argument (not called term)

A formal parameter that
will be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 13 + 23 + 33 + 43 + 55

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Nested def statements: Functions defined within other
function bodies are bound to names in the local frame

Evaluation rule for or expressions:

Evaluation rule for and expressions:

Evaluation rule for not expressions:

Applying user-defined functions:

1.Evaluate the operator and operand subexpressions.
2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

1.Create a new local frame with the same parent as the
function that was applied.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Its parent is the first frame of the current environment.
3.Bind the name of the function to the function value in the
first frame of the current environment.

1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values,
in the first frame of the current environment.

1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.

A name is bound to a value

In a frame, there is at most
one binding per name

Statements and expressions
Red arrow points to next line.
Gray arrow points to the line
just executed

Frames (right):Code (left):

Import statement

Assignment statement

Name Value

Binding

Local frame

Intrinsic name of
function called

Formal parameter
bound to argument Return value is

not a binding!

Built-in function

User-defined
function

2

1

“mul” is
not found

2

1

3

1

2 1

Always
extends

When a frame or
function has no label

[parent=___]

 then its parent is
always the global

frame

Always
extends

A three-frame
environment

A two-frame
environment

The global environment:
 the environment with only the global frame

A frame extends the environment that begins with its parent

2

1

“y” is
not found

“y” is
not found

Error

 def abs_value(x):

 if x > 0:
 return x
 elif x == 0:
 return 0
 else:
 return -x

1 statement,
3 clauses,
3 headers,
3 suites,
2 boolean
 contexts

•An environment is a
sequence of frames

•An environment for a non-
nested function (no def
within def) consists of
one local frame, followed
by the global frame

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

from operator import floordiv, mod
def divide_exact(n, d):
 """Return the quotient and remainder of dividing N by D.

 >>> q, r = divide_exact(2012, 10)
 >>> q
 201
 >>> r
 2
 """
 return floordiv(n, d), mod(n, d)

CS 61A Midterm 1 Study Guide – Page 2

A function that returns a function

A local
def statement

The name add_three is
bound to a function

Can refer to names in
the enclosing function

square = lambda x,y: x * y

and body "return x * y"
with formal parameters x and y

A function

Must be a single expression

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same arguments & behavior

• Both of those functions are associated with the environment
in which they are defined

• Both bind that function to the name "square"

• Only the def statement gives the function an intrinsic name

@trace1
def triple(x):
 return 3 * x

is identical to

def triple(x):
 return 3 * x
triple = trace1(triple)

No
• Square takes one argument.
• Square has the intrinsic name square.
• Square computes the square of a number.
• Square computes the square by calling mul.

Yes
What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x)+square(y)

Yes
No

• Compound objects combine objects together
• An abstract data type lets us manipulate compound objects as units
• Programs that use data isolate two aspects of programming:

 How data are represented (as parts)
 How data are manipulated (as units)

• Data abstraction: A methodology by which functions enforce an
abstraction barrier between representation and use

Begin with a function f and
an initial guess x

 (x, f(x))

-f(x)/f'(x)

-f(x)

�� ���)
�����

>>> f = lambda x: x*x - 2
>>> find_zero(f, 1)
1.4142135623730951

How to find the square root of 2?

1. Compute the value of f at the guess: f(x)
2. Compute the derivative of f at the guess: f'(x)
3. Update guess to be:

Multiple return values,
separated by commas

Multiple assignment
to two names

def mul_rational(x, y):
 return rational(numer(x) * numer(y), denom(x) * denom(y))

Constructor Selectors

def add_rational(x, y):
 nx, dx = numer(x), denom(x)
 ny, dy = numer(y), denom(y)
 return rational(nx * dy + ny * dx, dx * dy)
def eq_rational(x, y):
 return numer(x) * denom(y) == numer(y) * denom(x)

def rational(n, d):
 """Construct a rational number x that represents n/d."""
 return (n, d)

from operator import getitem
def numer(x):
 """Return the numerator of rational number x."""
 return getitem(x, 0)

def denom(x):
 """Return the denominator of rational number x."""
 return getitem(x, 1)

def pair(x, y):
 """Return a functional pair."""
 def dispatch(m):
 if m == 0:
 return x
 elif m == 1:
 return y
 return dispatch
def getitem_pair(p, i):
 """Return the element at index i of pair p."""
 return p(i)

This function
represents a pair

def iter_improve(update, done, guess=1, max_updates=1000):
 """Iteratively improve guess with update until done returns a true value.

 >>> iter_improve(golden_update, golden_test)
 1.618033988749895
 """
 k = 0
 while not done(guess) and k < max_updates:
 guess = update(guess)
 k = k + 1
 return guess

def newton_update(f):
 """Return an update function for f using Newton's method."""
 def update(x):
 return x - f(x) / approx_derivative(f, x)
 return update

def approx_derivative(f, x, delta=1e-5):
 """Return an approximation to the derivative of f at x."""
 df = f(x + delta) - f(x)
 return df/delta

def find_root(f, guess=1):
 """Return a guess of a zero of the function f, near guess.

 >>> from math import sin
 >>> find_root(lambda y: sin(y), 3)
 3.141592653589793
 """
 return iter_improve(newton_update(f), lambda x: f(x) == 0, guess)

2

1

3

1

2

3

• Every user-defined function has a
parent frame

• The parent of a function is the
frame in which it was defined

• Every local frame has a parent
frame

• The parent of a frame is the
parent of the function called

A
recursive
list is a

pair
The first element of
the pair is the first
element of the list

The second element of
the pair is the rest

of the list

None
represents
the empty

list

empty_rlist = None
def rlist(first, rest):
 """Make a recursive list from its first element and the rest."""
 return (first, rest)
def first(s):
 """Return the first element of a recursive list s."""
 return s[0]
def rest(s):
 """Return the rest of the elements of a recursive list s."""
 return s[1]

If a recursive list s is constructed from a first element f and
a recursive list r, then
• first(s) returns f, and
• rest(s) returns r, which is a recursive list.

Length. A sequence has
a finite length.

Element selection. A
sequence has an
element corresponding
to any non-negative
integer index less
than its length,
starting at 0 for the
first element.

def len_rlist(s):
 """Return the length of recursive list s."""
 length = 0
 while s != empty_rlist:
 s, length = rest(s), length + 1
 return length

def getitem_rlist(s, i):
 """Return the element at index i of rlist s."""
 while i > 0:
 s, i = rest(s), i - 1
 return first(s)

A function’s signature
has all the information
to create a local frame

