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mul(add(2, mul(4, 6)), add(3, 5))

add(2, mul(4, 6))
26mul

add 2
mul(4, 6)

mul 4 6

24

add(3, 5)

add 3 5

8

-2
2

-2
None

abs(number):

print(...):

display “-2”

2, 10
1024

pow(x, y):

Pure Functions

Non-Pure Functions

A name evaluates to the value bound to that name in the 
earliest frame of the current environment in which that 
name is found.

Defining:

Call expression:

square( x ):

return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square( x ):

return mul(x, x)

Def 
statement

Formal parameter

Body

Return 
expression

(return statement)

operand: 2+2
argument: 4operator: square

function: square

Intrinsic name

4

16Argument

Return value

  <header>:
      <statement>
      <statement>
      ...
  <separating header>:
      <statement>
      <statement>
      ...
  ...

Compound statement

Suite

Clause

Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the 
remaining clauses in the statement.

1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then 
return to step 1.

Execution rule for while statements:

Execution rule for def statements:

Execution rule for assignment statements:

Evaluation rule for call expressions:

Execution rule for conditional statements: hof.py                                                                        Page 2

    return total

def identity(k):
    return k

def cube(k):
    return pow(k, 3)

def summation(n, term):
    """Sum the first n terms of a sequence.
    
    >>> summation(5, cube)
    225
    """
    total, k = 0, 1
    while k <= n:
        total, k = total + term(k), k + 1
    return total

def pi_term(k):
    return 8 / (k * 4 − 3) / (k * 4 − 1)

# Local function definitions; returning functions

def make_adder(n):
    """Return a function that takes one argument k and returns k + n.

    >>> add_three = make_adder(3)
    >>> add_three(4)
    7
    """
    def adder(k):
        return k + n
    return adder

def compose1(f, g):
    """Return a function that composes f and g.

    f, g −− functions of a single argument
    """
    def h(x):
        return f(g(x))
    return h

@main
def run():
    interact()

Function of a single 
argument (not called term)

A formal parameter that 
will be bound to a function

The function bound to term 
gets called here

The cube function is passed 
as an argument value

0 + 13 + 23 + 33 + 43 + 55

Higher-order function: A function that takes a function as an 
argument value or returns a function as a return value

Nested def statements: Functions defined within other 
function bodies are bound to names in the local frame

Evaluation rule for or expressions:

Evaluation rule for and expressions:

Evaluation rule for not expressions:

Applying user-defined functions:

1.Evaluate the operator and operand subexpressions.
2.Apply the function that is the value of the operator 
subexpression to the arguments that are the values of the 
operand subexpressions.

1.Create a new local frame with the same parent as the 
function that was applied.

2.Bind the arguments to the function's formal parameter 
names in that frame.

3.Execute the body of the function in the environment 
beginning at that frame.

1.Create a new function value with the specified name, 
formal parameters, and function body.

2.Its parent is the first frame of the current environment.
3.Bind the name of the function to the function value in the 
first frame of the current environment.

1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values, 
in the first frame of the current environment.

1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression 
evaluates to v.

3.Otherwise, the expression evaluates to the value of the 
subexpression <right>.

1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression 
evaluates to v.

3.Otherwise, the expression evaluates to the value of the 
subexpression <right>.

1.Evaluate <exp>; The value is True if the result is a false 
value, and False otherwise.

A name is bound to a value

In a frame, there is at most 
one binding per name

Statements and expressions
Red arrow points to next line.
Gray arrow points to the line 
just executed

Frames (right):Code (left):

Import statement

Assignment statement

Name Value

Binding

Local frame

Intrinsic name of 
function called 

Formal parameter 
bound to argument Return value is

not a binding!

Built-in function

User-defined 
function

2

1

“mul” is 
not found

2

1

3

1

2 1

Always 
extends

When a frame or 
function has no label

[parent=___]

 then its parent is 
always the global 

frame  

Always 
extends

A three-frame 
environment

A two-frame 
environment

The global environment:
 the environment with only the global frame

A frame extends the environment that begins with its parent

2

1

“y” is 
not found

“y” is 
not found

Error

    def abs_value(x):

        if x > 0:
            return x
        elif x == 0:
            return 0
        else:
            return -x

1 statement,
3 clauses,
3 headers,
3 suites,
2 boolean
  contexts

•An environment is a 
sequence of frames

•An environment for a non-
nested function (no def 
within def) consists of 
one local frame, followed 
by the global frame



def make_adder(n):
    """Return a function that takes one argument k and returns k + n.

    >>> add_three = make_adder(3)
    >>> add_three(4)
    7
    """
    def adder(k):
        return k + n
    return adder

from operator import floordiv, mod
def divide_exact(n, d):
    """Return the quotient and remainder of dividing N by D.

    >>> q, r = divide_exact(2012, 10)
    >>> q
    201
    >>> r
    2
    """
    return floordiv(n, d), mod(n, d)
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A function that returns a function

A local 
def statement

The name add_three is 
bound to a function

Can refer to names in 
the enclosing function 

square = lambda x,y: x * y

and body "return x * y"
with formal parameters x and y

A function

Must be a single expression

square = lambda x: x * x def square(x):
    return x * xVS

• Both create a function with the same arguments & behavior

• Both of those functions are associated with the environment 
in which they are defined

• Both bind that function to the name "square"

• Only the def statement gives the function an intrinsic name

@trace1
def triple(x):
    return 3 * x

is identical to

def triple(x):
    return 3 * x
triple = trace1(triple)

No
• Square takes one argument.
• Square has the intrinsic name square.
• Square computes the square of a number.
• Square computes the square by calling mul.

Yes
What does sum_squares need to know about square?

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x)+square(y)

Yes
No

• Compound objects combine objects together
• An abstract data type lets us manipulate compound objects as units
• Programs that use data isolate two aspects of programming:

 How data are represented (as parts)
 How data are manipulated (as units)

• Data abstraction: A methodology by which functions enforce an 
abstraction barrier between representation and use

Begin with a function f and 
an initial guess x

 (x, f(x))

-f(x)/f'(x)

-f(x)

�� ���)
�����

>>> f = lambda x: x*x - 2
>>> find_zero(f, 1)
1.4142135623730951

How to find the square root of 2?

1. Compute the value of f at the guess: f(x)
2. Compute the derivative of f at the guess: f'(x)
3. Update guess to be: 

Multiple return values, 
separated by commas

Multiple assignment
to two names

def mul_rational(x, y):
    return rational(numer(x) * numer(y), denom(x) * denom(y))

Constructor Selectors

def add_rational(x, y):
    nx, dx = numer(x), denom(x)
    ny, dy = numer(y), denom(y)
    return rational(nx * dy + ny * dx, dx * dy)
def eq_rational(x, y):
    return numer(x) * denom(y) == numer(y) * denom(x)

def rational(n, d):
    """Construct a rational number x that represents n/d."""
    return (n, d)

from operator import getitem
def numer(x):
    """Return the numerator of rational number x."""
    return getitem(x, 0)

def denom(x):
    """Return the denominator of rational number x."""
    return getitem(x, 1)

def pair(x, y):
    """Return a functional pair."""
    def dispatch(m):
        if m == 0:
            return x
        elif m == 1:
            return y
    return dispatch
def getitem_pair(p, i):
    """Return the element at index i of pair p."""
    return p(i)

This function 
represents a pair 

def iter_improve(update, done, guess=1, max_updates=1000):
    """Iteratively improve guess with update until done returns a true value.

    >>> iter_improve(golden_update, golden_test)
    1.618033988749895
    """
    k = 0
    while not done(guess) and k < max_updates:
        guess = update(guess)
        k = k + 1
    return guess

def newton_update(f):
    """Return an update function for f using Newton's method."""
    def update(x):
        return x - f(x) / approx_derivative(f, x)
    return update

def approx_derivative(f, x, delta=1e-5):
    """Return an approximation to the derivative of f at x."""
    df = f(x + delta) - f(x)
    return df/delta

def find_root(f, guess=1):
    """Return a guess of a zero of the function f, near guess.

    >>> from math import sin
    >>> find_root(lambda y: sin(y), 3)
    3.141592653589793
    """
    return iter_improve(newton_update(f), lambda x: f(x) == 0, guess)

2

1

3

1

2

3

• Every user-defined function has a 
parent frame

• The parent of a function is the 
frame in which it was defined

• Every local frame has a parent 
frame

• The parent of a frame is the 
parent of the function called

A 
recursive 
list is a 

pair
The first element of 
the pair is the first 
element of the list

The second element of 
the pair is the rest 

of the list

None 
represents 
the empty 

list

empty_rlist = None
def rlist(first, rest):
    """Make a recursive list from its first element and the rest."""
    return (first, rest) 
def first(s):
    """Return the first element of a recursive list s."""
    return s[0]
def rest(s):
    """Return the rest of the elements of a recursive list s."""
    return s[1]

If a recursive list s is constructed from a first element f and 
a recursive list r, then 
• first(s) returns f, and 
• rest(s) returns r, which is a recursive list.

Length. A sequence has 
a finite length.

Element selection. A 
sequence has an 
element corresponding 
to any non-negative 
integer index less 
than its length, 
starting at 0 for the 
first element.

def len_rlist(s):
    """Return the length of recursive list s."""
    length = 0
    while s != empty_rlist:
        s, length = rest(s), length + 1
    return length

def getitem_rlist(s, i):
    """Return the element at index i of rlist s."""
    while i > 0:
        s, i = rest(s), i - 1
    return first(s)

A function’s signature 
has all the information 
to create a local frame


