CS 61A Midterm 1 Study Guide - Page 1

- 208 1 Pure Functions
mport statement L - T
(mul(add(Z, mul(4, 6)), add(3, 5))) -2 p abs(number):
- . H—' - A4 1 b2

- _pi Name >
. 2, 10 b pow(x, y):
(Assignment statement) 1) 1024
Code (left): Frames (right): Non-Pure Functions
Statements and expressions A name is bound to a value

Red arrow points to next line.
Gray arrow points to the line
just executed

) None

2) print(...): |
__r/_

display “-2”"

In a frame, there is at most
one binding per name

from operator import mul

def square(x): (Built-in functionv-)
return mul(x, x)

Compound statement

square(-2) Global frame Return
expression
Intrinsic name of mul - hengera:
function called der>;............ R

 square i<statement>

i<statement>

Ciocat rone)

Formal parameter
bound to argument

<separating header>:
<statement>
<statement>

:';let[;rn T .
i value) Return value is
e “i not a binding!

- . square
""""""""""" square
A name evaluates to the value bound to that name in the
earliest frame of the current environment in which that . . c
name is found. Calling/Applying: i S . 1 statement, if a
from operator import mul Global frame func mul(...) return mul(x, x) M16j| 3 headers,
def square(X) i ...ea-- - ==y mul || 3 suites,
b f (x)
~5 return i 0 e 2 boolean else
square(square(3)) contexts return -x

“ym is
anul” s Meaite 1 def f(x, y): Global frame func F(x, y)
not found 2 return g(x) 5 f
square Error g func g(a)
x 9 4 def g(a):

return a +y *An environment is a
. x |1 sequence of frames
7 result = f(1, 2)

Evaluation rule for call expressions:
1.Evaluate the operator and operand subexpressions.

2.Apply the function that is the value of the operator y 2 e An environment for a non-
subexpression to the arguments that are the values of the nested function (no def
operand subexpressions. g within def) consists of

Applying user-defined functions: g;etkgcgtozﬁmi;a:‘gllowed
1.Create a new local frame with the same parent as the

function that was applied.

ayr g
not found

2.Bind the arguments to the function's formal parameter

names in that frame. g
. . . The global environment:
3.Exe§:utg the body of the function in the environment the environment with only the global frame}
beginning at that frame.

Execution rule for def statements:

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Its parent is the first frame of the current environment.

3.Bind the name of the function to the function value in the
first frame of the current environment.

Execution rule for assignment statements:

1l.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values,
in the first frame of the current environment.

Execution rule for conditional statements:

%

Global frame func make_adder (n)
make_adder

add_three func adder (k) [parent=f1]

When a frame or

function has no label
A two-frame

environment [parent=___1

adder [parent=f1]

H T then its parent is
Seeeaee / Kk 4

1S]luduwalels jJap pPairsaN

Each clause is considered in order. retum alwaysfthe global
1.Evaluate the header's expression. -, value 7 [P
2.If it is a true value, execute the suite, then skip the environment
remaining clauses in the statement.
Evaluation rule for or expressions: A frame extends the environment that begins with its parent
1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression ST J s . Function of a single
evaluates to v.] §def cube (k) : < _argument (not called term)
3.0therwise, the expression evaluates to the value of the : return pow(k, 3)
subexpression <right>.)

/ A formal parameter that
Evaluation rule for and expressions: def summation(n,)k Will be bound to a function
1.Evaluate the subexpression <left>. """Sum the fi¥$t¥ 'n terms of a sequence.
2.If the result is a false value v, then the expression
evaluates tov. L OSS ammAataon (S CerRe
3.0therwise, the expression evaluates to the value of the
subefpressmn <right>. . The cube function is passed
Evaluation rule for not expressions: total, k = as an argument value
1.Evaluate <exp>; The value is True if the result is a false ’ 4
value, and False otherwise.
Execution rule for while statements:
1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then
return to step 1.

SweJ) 1e20] 9yl UT SAWeU 0} punoq oJe SITPOQ UOTIduUNy
9N1BA UJN19J B SB UOTIDUNS B SUJN1aJ JO anjeA juawnbue

ue Se UOT3IdUNJ B S3Ye} 1Byl UOTIdUNS Y :UOTIdUNS J3PI0-JdYBTH

J49U10 UTYITM PauT,ap SUOTIOUN4

while k <= n:
total, k = total + term(k);, k +
return total

0+13+23+33+43+55](

The function bound to term
gets called here

CS 61A Midterm 1 Study Guide - Page 2

square = lambda X,y: X * y @tracel square = lambda X: X * X def square(x):
def triple(x): g Vs return x *x x
A function return 3 * x

. * Both create a function with the same arguments & behavior
with formal parameters x and y is identical t
and body "return ix ¥ y 1s lgenticat to * Both of those functions are associated with the environment

in which they are defined

def triple(x):
return 3 * Xx
triple = tracel(triple)

(Must be a single expression
e Both bind that function to the name "square"

* Only the def statement gives the function an intrinsic name

def fﬁhake_addeﬁ?ﬁ A function that returns a function) How to find the square root of 27

>>> f = lambda x: xkx - 2
>>> find_zero(f, 1)
1.4142135623730951

>>>{add_three = make_adder(3)< The name add_three is
>>> add_three(qy T : bound to a function

A local o o=
def statement Begin with a function f and
an initial guess x

ef adder(k):

Can refer to names in 1. Compute the value of f at the guess: f(x)
the enclosing function 2. Compute the derivative of f at the guess: f'(x)
3. Update guess to be: =~ f(x)
1 def square(x): Global frame func square(x) f'(x)
return x * x square . - -
Imake_adder unc make_adder (n) def 1ter_1mpr9ve(upqate, done, gue§s:1, max_upda'ges:l@@@):
4 def make_adder(n): composel func composet(f. g Iteratively improve guess with update until done returns a true value.
5 def adder(k): . .
_ >>> iter_improve(golden_update, golden_test)
L dd k =f1 - — —
¢ return k +n une adder (). [parent=fil 1.618033988749895
return adder o

func h(x) [parent=f2]

9 def composel(f, g): k N 0
' while not done(guess) and k < max_updates:

i? def h(x): guess = update(guess)
return f(g(x)) k=k+1

return guess

.;f:.omposel(square def newton_update(f):
: """Return an update function for f using Newton's method."""
. . def update(x):
.g\aligtuiig;:efmed function has a return x - f(x) / approx_derivative(f, x)
* The parent of a function is the " [pafent=f2) R A return update
frame in which it was defined x3 e—— . .
« Every local frame has a parent def approx_derivative(f, x, delta=le-5):
frame adder |[parent=f1] A function’s signature """Return an approximation to the derivative of f at x."""
« The parent of a frame is the k 3 | has all the information df = f(x + delta) - f(x)
parent of the function called rewn ¢ [to create a local frame return df/delta
value
X)) def find_root(f, guess=1):
+ Compound objects combine objects together) . ""“Return a guess of a zero of the function f, near guess.
« An abstract data type lets us manipulate compound objects as units
« Programs that use data isolate two aspects of programming: >>> from math import sin
How data are represented (as parts) >>> find_root(lambda y: sin(y), 3)
How data are manipulated (as units) 3.141592653589793

- Data abstraction: A methodology by which functions enforce an

abstraction barrier between representation and use return iter_improve(newton_update(f), lambda x: f(x) == 0, guess)

def mul_rational(x, y):

def square(x): def sum_squares(x, y): -
return mul(x, x) return square(x)+square(y)
What does sum_squares need to know about square?
- Square takes one argument. Yes -
- Square has the intrinsic name square. No def add_rational(x, y):
- Square computes the square of a number. Yes nx, dx = numer(x), denom(x)
- Square computes the square by calling mul.No ny, dy = numer(y), denom(y)

return rational(nx * dy + ny x dx, dx * dy)
def eq_rational(x, y):
return numer(x) * denom(y) == numer(y) * denom(x)

None

0
o 3 o’ 4

def rational(n, d):
"""Construct a rational number x that represents n/d."""
return (n, d)

§ represents
J the empty
list

from operator import getitem

def numer(x):

The first element of The second element of """Return the numerator of rational number x."""
the pair is the first the pair is the rest return getitem(x, 0)

element of the list of the list

recursive
list is a
pair

def denom(x):
"""Return the denominator of rational number x."""
return getitem(x, 1)

empty_rlist = None
def rlist(first, rest):

"""Make a recursive list from its first element and the rest."""
return (first, rest)
def first(s):

de

—

pair(x, y):
.. t

unctional pair."""

"""Return the first element of a recursive list s.""" P m).‘;
return s[0] ifm==0: : . .
def rest(s): return x. This function
"""Return the rest of the elements of a recursive list s.""" elif m == 1:! represents a pair
return s[1] : return y:
If a recursive list s is constructed from a first element f and ré't'h'i-'ﬁ"d'i'é'{)'a"t'i:'h"'
a recursive list r, then def : ;).
) getitem_pair(p, i):
e first(s) returns f, and) . "niReturn the element at index i of pair p."""
e rest(s) returns r, which is a recursive list. return p(i)
def }En_rlist(s%: lenath of e i wun Length. A sequence has | from operator import floordiv, mod
lenR:Euzn@t e length of recursive list s. a finite length. def divide_exact(n, d):
whi%e s_!: empty_rlist: - t selecti A """Return the quotient and remainder of dividing N by D.
s, length = rest(s), length + 1 emen Sﬁ ection. . N . :
return length sequence has an >>>1 ;< Multiple assignment
element corresponding >>> ! to two names
def getitem_rlist(s, i): to any non-negative 201 0
"""Return the element at index i of rlist s."""integer index less >>> r Multiple return values,
while i > 0:) than its length, 2 separated by commas
s, i = rest(s), i -1 starting at @ for the L

return first(s)

first element. return ifloordiv(n, d), mod(n, d)

