CS 61A Structure and Interpretation of Computer Programs
Fall 2011 Final Fxam

INSTRUCTIONS

e You have 3 hours to complete the exam.

e The exam is closed book, closed notes, closed computer, closed calculator, except a one-page crib sheet of your
own creation and the three official 61A exam study guides, which are attached to the back of this exam.

e Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

For which assignments
do you have unresolved
regrade requests?

All the work on this exam
is my own. (please sign)

For staff use only

Q1] Q2] Q.3] Q4] Q5] Q.6] Total

/12 /16| /12| /18| /10| /12 /80

1. (12 points) What Would Python Print?

Assume that you have started Python 3 and executed the following statements:

def oracle(a, b, c):
if a == 42:
return b(a)
return c

class Big(object):
def medium(self, d):

def small(e):
nonlocal d
if e > 0:

d = d + self.medium(e) (-e)

return d

return small

class Huge(Big):
def medium(self, d):
return Big.medium(self, d+1)

For each of the following expressions, write the repr string (i.e., the string printed by Python interactively) of
the value to which it evaluates in the current environment. If evaluating the expression causes an error, write
“Error.” Any changes made to the environment by the expressions below will affect the subsequent expressions.

(a) (2 pt) oracle(41, lambda x: 1/0, ’blue pill’)

(b) (2 pt) oracle(42, lambda x: ’red pill’, 1/0)

(¢) (2 pt) Big.medium(self, -2)(-1)

(d) (2 pt) Big() .medium(1) (Big() .medium(2) (3))

(e) (2 pt) Huge () .medium(4) (5)

(f) (2 pt) Big() == Huge()

Login: 3

2. (16 points) Environment Diagrams.

(a) (6 pt) Complete the environment diagram for the program in the box below. You do not need to draw
an expression tree. A complete answer will:

e Complete all missing arrows. Arrows to the global frame can be abbreviated by small globes.

e Add all local frames created by applying user-defined functions.
e Add all missing names in frames.
e Add all final values referenced by frames.
() :
sixty: sixty(x):
def o(ne):
return x x ne
def A():
nonlocal o
o = lambda x: X * X
return 2
return add(o(3), add(A(), o(4)))

o(ne):

_Ireturn X * ne

A():
nonlocal o
o = lambda x: X * X
return 2
from operator import add
def sixty(x):
lambda(x) : def o(ne):
return x *x ne
_‘return X * X def A():

nonlocal o
o = lambda x: x * X
return 2
return add(o(3), add(A(), o(4)))
sixty(1)

(b) (2 pt) What value is returned by evaluating sixty(1)? If evaluation causes an error, write “Error.”

(c) (6 pt) Complete the environment diagram for the program in the box below. Assume Python’s normal
lexical scoping rules. You do not need to draw an expression tree. A complete answer will:

e Complete all missing arrows. Arrows to the global frame can be abbreviated by small globes.

Add all local frames created by applying user-defined functions.

Add all missing names in frames.
Add all final values referenced by frames. Represent tuple values using box-and-pointer notation.

snow(a, b): @P_

__lreturn (b, a(b+2))

man(b) : (Pl_

def ice(d):
return (b, d)
return snow(ice, b+1)

ice(d):

_lreturn (b, d)

def snow(a, b):
return (b, a(b+2))

def man(b):
def ice(d):
return (b, d)
return snow(ice, b+1)

e = man(2)

(d) (2 pt) If Python were instead a dynamically scoped language, what would be the value bound to e in
the global frame after this program was executed? Write the repr string of this value.

Login: 5

3. (12 points) Pyth-On Vacation.

Finish implementing this account object in Logo. Unlike a Python Account from lecture, the balance of this
Logo account is stored as a global variable called bal.

The desired behavior of the account is to accept deposit and withdraw messages. Deposit increases the
balance by an amount, while withdraw reduces the amount if funds are available.

7?7 make "john_account make_account 100

? print invoke "withdraw :john_account 40
60

? print invoke "withdraw :john_account 70
insufficient_funds

? print invoke '"deposit :john_account 20
80

? print invoke "withdraw :john_account 70
10

Invoking a method calls the corresponding named procedure. The deposit and withdraw procedures are
implemented below.

to deposit :amt
make "bal :bal + :amt output :bal
end
to withdraw :amt
ifelse :amt > :bal [output "insufficient_funds] [make "bal :bal - :amt output :ball
end
(a) (6 pt) Add punctuation and the word run to make account and invoke so that the account object

behaves as specified. You may add quotation marks, square brackets, colons, parentheses, and the word
run, but no other words. Do not remove any words. Multiple calls to run may be needed.

to make_account :balance

make bal balance

output sentence message amount

end

to invoke :message :account :amount

output account

end

(b) (6 pt) The D33P language includes three types of tokens: open parentheses, close parentheses, and
integers. An expression is well-formed if it contains balanced parentheses, and each integer correctly
indicates its depth: the number of nested sets of parentheses that surround that integer.

Implement correct_depth, which takes a list of tokens as input and returns True if and only if a prefix
of the input is a well-formed D33P expression. Assume that the input contains a balanced set of nested
parentheses with single-digit positive integers surrounded by parentheses. You only need to check that
the integers indicate the correct depths.

Do not change any of the code that is provided. You may not use any def statements or lambda expressions.

def correct_depth(s, depth=0):
"""Return whether a prefix of list s is a well-formed D33P expression.

>>> 1list(’ (1))
[7(), ’1), 7))]
>>> correct_depth(list(’(1)?))
True
>>> correct_depth(list(’(2)7))
False
>>> correct_depth(list (’ ((2)((3)))’))
True
>>> correct_depth(list (’ ((2)(3))’))
False
>>> correct_depth(list(’ ((3)(2))’))
False
>>> correct_depth(list (’ (((3)((4))(3))(2)((3)))’))
True
first = s.pop(0)
if first !'= ’(:
return depth==int(first)

Login: 7

4. (18 points) Interpreters. It is possible to complete each part of this question without completing the others.

The Decider language applies decisions, which are tree-structured rules that allow complex classification
schemes to be decomposed into hierarchies of lookups. For instance, the problem of classifying household
pets might use the following “decision” to distinguish among birds, cats, and dogs.

two woof -
four meow ot

To decide what sort of animal something is, we look up its features. We first check whether it has two legs or
four. If it has four legs, we check what sound it makes. Applying a decision always begins at the root (left).

All values in Decider are dictionaries with string-valued keys, such as the dog fido and the bird tweety.

fido = {’name’: ’fido’, ’legs’: ’four’, ’sound’: ’woof’}
tweety = {’name’: ’tweety’, ’legs’: ’two’}

A decision is a dictionary that has >?’ as a key bound to its decision feature. A decision also contains options.
The values of options can be decisions, forming a tree. The animals decision below matches the diagram above.

four_legged = {’7’: ’sound’, ’woof’: {’kind’: ’dog’}, ‘meow’: {’kind’: ’cat’}}
animals = {277 legs’, ’two’: {’kind’: ’bird’}, ’four’: four_legged}

(a) (4 pt) The decide function takes a decision and some features (both dictionaries). First, it finds
the decision feature f. Next, it looks up the option for that feature stored in features. Finally, it
returns the value for that option. Fill in the four missing names in the blanks in decide, which raises a
DecisionError whenever the decision cannot be applied to the features.

def decide(decision, features):
"""Apply a decision to some features, both of which are dictionaries.

>>> decide(four_legged, fido)
{’kind’: ’dog’}
>>> decide(animals, fido) # Returns the four_legged decision
{’meow’: {’kind’: ’cat’}, ’woof’: {’kind’: ’dog’}, ’7’: ’sound’}
nun
if ’?’ not in decision:

raise DecisionError(’Decision has no ? -- not a decision.’)

f = o _____ [>7’]

if f not in features:
raise DecisionError(’Features does not contain the decision feature.’)

option = _____________________________ [£]

if option not in decision:
raise DecisionError(’Decision does not contain selected option.’)

return [

class DecisionError (Exception):
"""An error raised while applying a decision."""

(b) (6 pt) The animals decision is a depth-two tree that contains four_legged as the value for its ’four’
option. The decider_apply function repeatedly applies the result of a decision to some features until it
finds a result that cannot be applied. In this way, it traverses a tree-structured decision.

Implement decider_apply, which must call decide within a try statement. This function repeatedly
applies the result of decide to the features. It returns the result of the last successful call to decide. If
decision cannot successfully be applied to features at all, return decision.

You may not use any def statements or lambda expressions in your implementation.

def decider_apply(decision, features):
"""Traverse the decision by applying sub-decisions to features.

>>> decider_apply(four_legged, fido)

{’kind’: ’dog’}

>>> decider_apply(animals, fido)

{’kind’: ’dog’}

>>> decider_apply(animals, tweety)

{’kind’: ’bird’}

>>> decider_apply(fido, tweety) # fido is not a decision, so return it
{’sound’: ’woof’, ’legs’: ’four’, ’name’: ’fido’}

Login:

(¢) (6 pt) All expressions in Decider are dictionaries. Compound expressions contain the keys ‘operator®

and ‘operand‘. Two compound expressions, big pet_exp and kind _of pet_exp, appear below.

pets = {’7?’: ’size’, ’small’: tweety, ’large’: fido}
big_pet_exp = {’operator’: pets, ’operand’: {’size’: ’large’l}}
kind_of_pet_exp = {’operator’: animals, ’operand’: big_pet_exp}

To evaluate a compound expression, evaluate its operator, evaluate its operand, then apply the decision
dictionary that is the value of the operator to the features dictionary that is the value of the operand.
All expressions that are not compound expressions are self-evaluating.

Complete the implementation of decider_eval by filling in the missing expressions.

def decider_eval(exp):
"""Evaluate a Decider expression.

>>> decider_eval(fido)

{’sound’: ’woof’, ’legs’: ’four’, ’name’: ’fido’}
>>> decider_eval(big_pet_exp)

{’sound’: ’woof’, ’legs’: ’four’, ’name’: ’fido’}
>>> decider_eval (kind_of_pet_exp)

{’kind’: ’dog’}

>>> decisions = {’7’: ’?’, ’legs’: animals, ’size’: pets}

>>> sub_exp = {’operator’: decisions, ’operand’: {’?7’: ’legs’}}
>>> nested_exp = {’operator’: sub_exp, ’operand’: fido}

>>> decider_eval (nested_exp)

{’kind’: ’dog’}

decision

features = __________ ___ _ _________ e __
return decider_apply(decision, features)

else:

return exp

(d) (2 pt) To what value does the following Python expression evaluate? Write its repr string.

decider_eval({’operator’: pets, ’operand’: {’size’: ’small’}})

5. (10 points) Concurrency.

The following two statements are executed in parallel in a shared environment in which x is bound to 3.

>>>x =x + 1
>>> x

I
o]
N
*
o]

(a) (2 pt) List all possible values of x at the end of execution.

(b) (2 pt) From the values you listed in (a), list all possible correct values of x at the end of execution.

The following program manages concurrent access to a shared dictionary called grades that maps student
names to their 61A grades. The list roster contains the names of all students who have assigned grades.

grades = {}
roster = []
grades_lock, roster_lock = Lock(), Lock()

def add_grade(name, grade): def remove_grade(name):
grades_lock.acquire() roster_lock.acquire()
grades [name] = grade grades_lock.acquire ()
roster_lock.acquire() if name in grades:
if name not in roster: grades .pop (name)

roster.append (name) if name in roster:

roster_lock.release() roster.remove (name)
grades_lock.release() grades_lock.release()

roster_lock.release()

For each set of statements (left and right) executed concurrently below, circle all of the problems that may
occur, or circle None of these are possible if none of the listed problems may possibly occur.

(c) (2 pt) [>>> add_grade(Ceric_k’, 1) | >>> add_grade(’steven’, 2) ‘

(A) Deadlock
(B) Both processes simultaneously write to grades or roster

(C) None of these are possible

>>> add_grade(’stephanie’, 3) >>> roster.append(’eric_t’)
>>> grades[’eric_t’] = 4

(d) (2 pt)

(A) Deadlock
(B) Both processes simultaneously write to grades or roster

(C) None of these are possible

>>> add_grade(’phill’, 5) >>> add_grade(’aki’, 6)

2 pt
(e) (2 pt) >>> remove_grade(’aki’)

(A) Deadlock
(B) Both processes simultaneously write to grades or roster

(C) None of these are possible

Login: 11

6. (12 points) Iterators and Streams.

(a) (4 pt) The generator function unique takes an iterable argument and returns an iterator over all the
unique elements of its input in the order that they first appear. Implement unique without using a for
statement. You may not use any def, for, or class statements or lambda expressions.

def unique(iterable):
"""Return an iterator over the unique elements of an iterable input.

>>> list(unique([1, 3, 2, 2, 5, 3, 4, 11))
[1: 3, 2) 5’ 4]

The function sum_grid takes a stream of streams s and a length n and returns the sum of the first n
elements of the first n streams in s. Stream and make_integer_stream are defined in your study guide.

def sum_grid(s, n):
total = 0
for _ in range(n):
t = s.first
for _ in range(n):
total = total + t.first
t = t.rest
s = s.rest

return total

def make_integer_grid(first=1):
def compute_rest():
return make_integer_grid(first+1)
return Stream(make_integer_stream(first), compute_rest)

(b) (2 pt) What is the value of sum_grid(make_integer_grid(1), 4)7

(¢) (2 pt) Define a mathematical function f(n) such that evaluating sum_grid(make_integer_grid(1), n)
performs O(f(n)) addition operations.

f(n) =

(d) (4 pt) The function repeating returns a Stream of integers that begins with start and increments each
successive value until stop would be reached, at which point it returns to start and repeats.

Cross out lines from the body of repeating so that it correctly implements this behavior.

def repeating(start, stop):
"""Return a stream of integers that repeats the range(start, stop).

>>> s = repeating(3, 6)
>>> s.first, s.rest.first, s.rest.rest.first, s.rest.rest.rest.first,

(3, 4, 5, 3)
>>> s.rest.rest.rest.rest.first
4

def make_stream(current):
def compute_rest(next):
def compute_rest():
nonlocal start

next = current+1

next = current % (stop-start)
if next > stop:
if next == stop:
next = start
start = next
return make_stream(start)
return make_stream(next)
return Stream(current, make_stream(start))
return Stream(current, make_stream(next))
return Stream(current, compute_rest)
return Stream(current, compute_rest())
return compute_rest
return compute_rest()

return make_stream(start)

CS 61A Midterm 1 Study Guide - Page 1

TN
()
mul: — N
—_—)
mul(a,b): T
J S
. Environments
Square: 4) & Values
square(x): emmmmmmmmmm———

' Expressions
return mul(x, x) |
h

from operator import mul
def square(x):
return mul(x, x)
p square(-2)

208
(mul(add(Z, mul(4, 6)), add(3, 5)))

Pure Functions

-2) abs(number):
1 »2
2, 10 p pow(x, y):

1) 1024

Non-Pure Functions

2) print(...): |
__r/_

display “-2”"

) None

A name evaluates
to the value
bound to that
name in the
earliest frame
of the current
environment in
which that name
is found.

The existing environment in which
the call expression is evaluated

Theenvkonment?
created for the (i/
function body square(-2)

A

)

Environments (Names):

Frames link to each other

An environment is a sequence
of frames

mul:— The global
. frame r

An environment is a first frame,
plus the environment that follows

Expressions (Program):
Not part of an environment

They are evaluated in an
environment to yield a value

j%{ Return expression)

Return
expression

Body (return statement)

Binding

Call expression:

} operand: 2+2
" |argument: 4

operator: square
function: square

Evaluation rule for call expressions:

1.Evaluate the operator and operand subexpressions.

2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

Applying user-defined functions:

1.Create a new local frame that extends the environment with
which the function is associated.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

Execution rule for def statements:

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Associate that function with the current environment.

3.Bind the name of the function to the function value in the
first frame of the current environment.

Execution rule for assignment statements:

1l.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values
in the first frame of the current environment.

Execution rule for conditional statements:

Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.
Evaluation rule for or expressions:
1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.
3.0therwise, the expression evaluates to the value of the
subexpression <right>.
Evaluation rule for and expressions:
1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.
3.0therwise, the expression evaluates to the value of the
subexpression <right>.
Evaluation rule for not expressions:

1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.
Execution rule for while statements:
1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then
return to step 1.

PR SR—

mul(a,b):Kt

)
Y L

square(x): T

Every call to a user—
defined function creates
a new local frame

81

square(square(3))

square(3)

<header=;. ... N
i<statement>
i<statement>

<separating header>:
<statement>
<statement>

iﬁﬁ def square(square):
mul: — N return mul(square, square)
mul(a,b): ®) from operator import mul
- 01 L pesquare(4)
square: ——=—— ‘1\
A square(square): h
: __1 return mul(square, square)
A
&
square: 4
square A

S i

\Jj -
[square(4) |

Environments & Values

Expressions

1S1UBWIIRYS JOp PalsaN

(deF Gabe (k)T 3 {
1)

return pow(k,

Function of a single
argument (not called term)

def summation(n, | rm‘)[wiu be bound

A formal parameter that

to a functionJ

Sum the fi¥§t™n terms of a sequence.

The cube function is passed
as an argument value

total, k = 0,
while k <= n:
total, k = total +

return total

—+
(=
>
s}
~+
[
o
>
o
o
Q.
s
0]
[
Q
=
o
o
[=)
c
>
o
~+
(=]
>
Q
3
(0]
[
s
>
~+
=3
[0
p
(=
o
Q
—
—+
=y
Q
3
[

9N1eA UuJdnl}aJ e Se UuoTldun) B Sudniad J0 aNn)eA juswnbae

49410 UTYITM PBUTLap SUOTIOUNY

0+ 13 + 23 + 33 + 43 + 5] (

The function bound to term
gets called here

ue Se UOT3DUNY B S3Ye} 1Byl UOTIdUNS Y :UOTIdUNS J9PA0-J3YBTH

CS 61A Midterm 1 Study Guide - Page 2

square = lambda X,y: X * y @tracel
def triple(x):
A function return 3 * x
with formal parameters x and y

and body "return : is identical to

def triple(x):
return 3 * x

(Must be a single expression
triple = tracel(triple)

A function that returns a function)

The name add_three is
bound to a function

{'def adder (k

def statement

Can refer to names in
the enclosing function

_ . def square(x):
square = lambda x: x * x VS return % % x
¢ Both create a function with the same arguments & behavior

¢ Both of those functions are associated with the environment
in which they are defined

e Both bind that function to the name "square"

* Only the def statement gives the function an intrinsic name

7N
()

_Tiff:iiiiiij________j | def make_adder(n):
< = def adder(k):

make_adder(n): return kK + n

L

g

A
return adder

n:1 : make_adder (1) (2)
adder: ——— 4
adder(k): T

make_adder I
oo
)

® : return k + n
k: 2 :

adder A

®

make_adder(1) (2)
D e e—l

make_adder (1)

How to find the square root of 2?7
>>> f = lambda x: xkx - 2

>>> find_zero(f, 1)
1.4142135623730951

Begin with a function f and
an initial guess x
1. Compute the value of f at the guess: f(x)
2. Compute the derivative of f at the guess: f'(x)
3. Update guess to be: f(x)

CfTx)

« Compound objects combine primitive objects together
« An abstract data type lets us manipulate compound objects as units
« Programs that use data isolate two aspects of programming:
How data are represented (as parts)
How data are manipulated (as units)
- Data abstraction: A methodology by which functions enforce an
abstraction barrier between representation and use

def newton_update(f):
"""Return an update function for f using Newton's method."""
def update(x):
return x — f(x) / approx_derivative(f, x)
return update
def approx_derivative(f, x, delta=le-5):
"""Return an approximation to the derivative of f at x.
df = f(x + delta) - f(x)
return df/delta

def find root(f, guess=1):
"""Return a guess of a zero of the function f, near guess.

>>> from math import sin
>>> find root(lambda y: sin(y), 3)
3.141592653589793

return iter improve(newton_update(f), lambda x: f(x) == 0, guess)

def iter improve(update, done, guess=1, max_ updates=1000):
"""Iteratively improve guess with update until done returns a true value.

guess —— An initial guess
update —— A function from guesses to guesses; updates the guess
done —— A function from guesses to boolean values; tests if guess is good

>>> iter_ improve(golden_update, golden_test)
1.618033988749895
k=0
while not done(guess) and k < max_updates:
guess = update(guess)
k=k+ 1
return guess

def square(x): def sum_squares(x, y):
return mul(x, x) return square(x)+square(y)
What does sum_squares need to know about square?
- Square takes one argument. Yes
- Square has the intrinsic name square. No
- Square computes the square of a number. Yes
- Square computes the square by calling mul. No

Rational numbers in the problem domain

add_rat mul_rat eq_rat

|
|

Rational numbers as numerators & denominators

make_rat numer denom

|
|

Rational numbers as tuples

J
|

tuple getitem

However tuples are implemented in Python

def mul rat(x, y):
"""Multiply rational numbers x and y
return make_rat(numer(x) * numer(y), denom(x) * denom(y))

def add rat(x, y):
"""Add rational numbers x and y.
nx, dx = numer(x), denom(x)
ny, dy = numer(y), denom(y)
return make_rat(nx * dy + ny * dx, dx * dy)

def eqg rat(x, y):
"""Return whether rational numbers x and y are equal.
return numer(x) * denom(y) == numer(y) * denom(x)

Three numeric types in Python:

>>> type(2) Represents integers]

exactly

A

<class 'int'>

>>> type(1.5)
'float'>
>>> type(1+1j)

<class

Represents real numbers
approximately

N

<class 'complex'>

def make rat(n, d):
"""Construct a rational number x that represents n/d."""
return (n, d)

from operator import getitem
def numer(x):

"""Return the numerator of rational number x.
return getitem(x, 0)

def denom(x):
"""Return the denominator of rational number x.
return getitem(x, 1)

O —
N A function is
associated with the
T first frame of the
L_ environment in
which the function

was defined

square(x):

return x * X

ke pair(x, y):
"Return a functional pair.
def dispatch(m):
if m == 0:
return x
elif m == 1:
return y
return dispatch

W

def getitem pair(p, i):
"""Return the element at index i of pair p.
return p(i)

W

Thick curved arrows show how a
frame is created; they are not
part of the environment diagram

square

from operator import floordiv, mod

def divide exact(n, d):
"""Return the quotient and remainder of dividing n by d.

Multiple assignment
to two names

Multiple return values,
separated by commas

CS 61A Midterm 2 Study Guide — Page 1

Every object is

an arrow pointing
to a box

Boxes for tuples have
multiple parts

A recursive list
is a pair

None represents
the empty list

The first element of
the pair is the first
element of the list

The second element of
the pair is the rest
of the list

Status

Effect

Create a new binding from name "x"
to object 2 in the first frame of
the current environment.

*No nonlocal statement
e"x" is not bound locally

Re-bind name "x" to object 2 in the
first frame of the current env.

*No nonlocal statement
e"x" is bound locally

enonlocal x
e"x" is bound in a non-local frame
(but not the global frame)

Re-bind "x" to 2 in the first non-
local frame of the current
environment in which it is bound.

enonlocal x SyntaxE i
o"x" is not bound in a non-local .i? ?Zu;gO“

frame

enonlocal x
e'x" is bound in a non-local frame

o"x" also bound locally

SyntaxError: name 'x

and nonlocal

is parameter

2
0 L———\
getitem_rlist(counts, 1)

while i > 0:
s, i= rest(s) i-1

A

AN
)
make withdraw: —] make_withdraw(balance):

def withdraw(amount):

nonlocal balance

wd: if amount > balance:
return 'Insuff. funds'
balance = balance-amount
~ e 8 return balance
—> N return withdraw
amount: 5 [balance:2d3612
vithdraw _ |withdraw: R 1
(> X &/
> amount: 3\]/ ke withdraw withdraw(amount):

am withdraw LR
w

A [12
17wd(3)
nonlocal balance
if amount > balance: wd = make_withdraw(20)
o) return 'Insufficient funds' wd (5
“® balance = balance - amount B> wd(3)

return balance

for <name> in <expression>:
<suite>
1. Evaluate the header <expression>, which must yield an
iterable value.
2. For each element in that sequence, in order:
A. Bind <name> to that element in the local environment.
B. Execute the <suite>.

A range is a sequence of consecutive integers.*

-y =5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5,

>>> city = 'Berkeley'
>>> len(city) range(-2, 2)
8

TN

{{) e 1 2 3
nest: I~ suits = ['®','e', 'a', 'at]
nest = list(suits)
nest[0] = suits
suits.append('J")

suits:

Dictionaries are unordered collections of key-value pairs.

Dictionary keys do have two restrictions:

e A key of a dictionary cannot be an object of a mutable built-in type.
e Two keys cannot be equal. There can be at most one value for a key.

>>> city[3] An element of a string
k' is itself a string!

Length. A sequence has a finite length.

Element selection. A sequence has an element
corresponding to any non-negative integer index less
than its length, starting at @ for the first element.

(<map exp> for <name> in <iter exp> if <filter exp>)

Evaluates to an iterable object.

<iter exp> is evaluated when the generator expression
is evaluated.

Remaining expressions are evaluated when elements are
accessed.

Both sides of the
equation are equal:
they must be
the same quantity

This quantity
relates directly
to celsius

This quantity
relates directly
to fahrenheit

celsius —a a a
* C c * + ¢ — fahrenheit

w X

@ Call to fib
@ Found in cache

fib(4)

.~ ‘e
fib(2) fib(3)

) fib(4)
fib(1) fib(2)

n: size of the problem
R(n): Measurement of some resource used (time or space)

R(n) = 0©(f(n))
means that there are constants ki and k2 such that
k- f(n) < R(n) < ko f(n)

for sufficiently large values of n.

om*) O®?) ©m) ©O(ogn) ©()

o)

def make_converter(c, f):
u, v, w, X, y = [make_connector() for
multiplier(c, w, u)
multiplier(v, x, u)
adder (v, y,
constant (w,

)
constant(x, 5)
constant(y,) Connectors (;/ Relations)

def make _ternary_¢ constralnt(a
"The constraint that ab
def new _value():
av, bv, cv = [connector['has val']() for connector in (a, b, c)]
if av and bv:
c['set_val'](constraint, ab(a['val'], b['val'l))
elif av and cv:
b['set val'](constraint, ca(c['val'], a['val'l))
elif bv and cv:
a['set_val'](constraint, cb(c['val'], b['val']))
def forget_ value():
for connector in (a, b, c):
connector|['forget'](constraint)
constraint = {'new val': new_value, 'forget':
for connector in (a, b, c):
connector|['connect'](constraint)
return constraint

_ in range(5)]

(c a}ia aacc a) b and cb(c,b)=

forget_value}

from operator import add, sub, mul, truediv

def adder(a, b, c):
"The constraint that a + b = c."""
return make_ternary constraint(a, b, ¢, add, sub, sub)

def multiplier(a, b, c):
"""The constraint that a * b = c."""
return make_ternary constraint(a, b, ¢, mul, truediv, truediv)

no binding for nonlocal

CS 61A Midterm 2 Study Guide — Page 2

class <name>(<base class>)

<suite>
*A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.
eStatements in the <suite> create attributes of the class.
*As soon as an instance is created, it is passed to __init__,
which is an attribute of the class.

To evaluate a dot expression: <expression> . <name>
1. Evaluate the <expression> to the left of the dot, which
yields the object of the dot expression.

- Objects have local state & interact via message passing

- Objects are instantiated by classes, which are also objects
- Classes may inherit from other classes to share behavior

+ Mechanics of objects are governed by "evaluation procedures"

THE LINE

- Objects have mutable dictionaries of attributes

- Attribute look-up for instances is a function

- Attribute look-up for classes is another function
- Object instantiation is another function

2. <name> is matched against the instance attributes of def make_instance(cls):
that object; if an attribute with that name exists, its def get_value(name):
value is returned. if name in attributes:
3. If not, <name> is looked up in the class, which yields a return attributes[name]
class attribute value. else: B : :
4. That value is returned unless it is a function, in which value = cls['get’] (name)
case a bound method is returned instead. return bind_method(value, instance)
def set_value(name, value)
. attributes[name] = value
) attributes = {}
linterest = 0.02 - instance = {'get': get_value, 'set': set_value}
m return instance
idef __init__(self, account_holder): def bind_method(value, instance)
self.balance = 0 ‘ m if callable(value):
self.holder = account_holder def method(*args):
deposit(self, amount): N return value(instance, *args)
self.balance = self.balance + amount! return method
return self.balance : else:
: return value
idef withdraw(self, amount): def make_class(attributes={}, base_class=None):
: if amount > self.balance: def get_value(name):
return 'Insufficient funds' : if name in attributes:
self.balance = self.balance - amount§ return attributes[name]
. return self.balance : elif base_class is not None:
"" return base_class['get'] (name)
Assignment statements with a dot expression on their left-hand def set_value(name, value)
side affect attributes for the object of that dot expression attributes[name] = value
e If the object is an instance, then assignment sets an def new(*args):
instance attribute return init_instance(cls, *args)
e If the object is a class, then assignment sets a class cls = {'get': get_value, 'set': set_value, 'new': new}
attribute return cls
Sss i - i S>> i ; - def init_instance(cls, *args):
jim_account = Account('Jim") jim_account.interest 0.8 X ‘ .
>>> tom_account = Account('Tom') [>>> jim_account.interest Instance = make_instance(cls)
>>> tom_account.interest 0.8 init = ?15[get'1("__init_")
0.02 >>> tom_account.interest if init: .
>>> jim_account.interest 0.04 init(instance, *args)
0.02° >>> Account.interest = 0.05 return instance
>>> tom_account.interest >>> tom_account.interest def make_account_class():
0.02 0.05 def __init__(self, account_holder)
>>> Account.interest = 0.04 >>> jim_account.interest self['set'] ('holder', account_holder)
>>> tom_account.interest 0.8 self['set'] ('balance', 0)
0.04 def deposit(self, amount):
new_balance = self['get']('balance') + amount
class CheckingAccount (A int) : self['set'] ('balance', new_balance)
withdraw fee = 1 return self['get']('balance"')
interest = 0.01 def withdraw(self, amount):
def withdraw(self, amount): e
return Account.withdraw(self, amount + self.withdraw_fee) return make_class({'__init__': __init__,'deposit': deposit,
'withdraw': withdraw, 'interest': 0.02})
H >>> = ‘T
To logk up a name in é class. . Eﬂ.jnigigilngAccount(T) class ComplexRI(object):
1.If it names an attrlbute in the 0 01 def init_ (self, real, imag)
class, return the attribute value. 55> ch.d it(20) Self.real = real
2.0therwise, look up the name in the 7% C7-G€POS self.imag = imag(Special decorator: "Call this
base class, if there is one. >>> ch.withdraw(s) function on attribute look-up"
class SavingsAccount (Account) : 14 def magnitude(self):

deposit_fee = 2

return (self.real ** 2 + self.imag ** 2) ** 0.5

def deposit(self, amount):
return Account.deposit(self, amount - self.deposit_fee)
class AsSeenOnTVAccount (CheckingAccount, SavingsAccount):
def __init__(self, account_holder)
self.holder account_holder
self.balance 1 # A free dollar!

def pig_latin(w):

def starts_with_a_vowel(w):

- The def statement header is
similar to other functions

- Conditional statements check
for base cases

- Base cases are evaluated
without recursive calls

- Typically, all other cases are
evaluated with recursive calls

if starts_with_a_vowel(w):
return w + 'ay'
return pig_latin(w[l:] + w[0])

return w[0O].lower () in 'aeiou

Type dispatching: Define a different function for each
possible combination of types for which an operation is valid
def iscomplex(z):

return type(z) in (ComplexRI, ComplexMA)

def isrational(z):
return type(z)

Converted to a
real number (float)

Rational

def add_complex_and_rational(z,

return ComplexRI(z.real +: z.1imag)

def add_by_type_dispatching(zl, z2):
"""Add z1 and z2, which may be complex or rational
if iscomplex(zl) and iscomplex(z2):

return add_complex(zl, z2)

class Rlist(object):

class Tree(object):
def __init__ (self, entry,
left=None,
right=None):
self.entry = entry
self.left left
self.right right

clas

empty = EmptyList() _

def __init__ (self,

first,
self.first = first

rest=empty) :

def map_rlist(s, fn)

self.rest rest if s is Rlist.empty:
""""""""""""""""""""" turn s
‘def len_ (self): re .
: L rest = map_rlist(s.rest,
H + H —
\...return 1 + len(self.rest); return R1ISt(fn(s firet)
def _ getitem__ (self, 1i): rest)

if i == 0: def count_leaves(tree):

if type(tree)
return 1

return self.first != tuple:

return self.rest[i-1]

return sum(map(count_leaves,

elif iscomplex(zl) and isrational(z2):
return add_complex_and_rational(zl, z2)
elif isrational(zl) and iscomplex(z2):
return add_complex_and_rational(z2, zl)
else:
add_rational(zl, z2)

. Attempt to coerce arguments into values of the same type
. Apply type-specific (not cross-type) operations

N

def coerce_apply(operator_name, x, y)

tx, ty = type_tag(x), type_tag(y)
if tx = ty:
if (tx, ty) in coercions:
fn) tx, x = ty, coercions[(tx, ty)](x)
, elif (ty, tx) in coercions:
ty, y = tx, coercions[(ty, tx)](y)
else:
return 'No coercion possible.’

key = (operator_name, tx)

tree)) return coerce_apply.implementations[key] (x,

y)

CS 61A Final Exam Study Guide - Page 1

The interface for sets:

- Membership testing: Is a value an element of a set?

< Adjunction: Return a set with all elements in s and a value v.
+Union: Return a set with all elements in setl or set2.

- Intersection: Return a set with any elements in setl and set2.

Union Intersection Adjunction
1 2 1 2 1
3 3 3 3 3 2
4 5 4 5 4
1 2 12
4 5 3 3 4 3

Proposal 1: A set is represented by a recursive list that
contains no duplicate items.

Proposal 2: A set is represented by a recursive list with
unique elements ordered from least to greatest.

Proposal 3: A set is represented as a Tree. Each entry is:
- Larger than all entries in its left branch and
- Smaller than all entries in its right branch

Proposal 1 2 3
Membership O(n) O(n) ©O(logn)
Adjunction O(n) O(n) O(logn)

Union O(n?) O(n) O(n)
Intersection ©(n?) O(n) ©O(n)

(If 9 is in the set, it is somewhere in this branch)

Exceptions are raised with a raise statement.
raise <expression>
<expression> must evaluate to an exception instance or class.

Exceptions are constructed like any other object; they are
just instances of classes that inherit from BaseException.

try:
<try suite>
except <exception class> as <name>:

<except suite>

Streams are lazily

The <try suite> is executed first; computed recursive lists

If, during the course of executing the
<try suite>, an exception is raised

that is not handled otherwise, and T ?

T
If the class of the exception inherits J \ 7
from <exception class>, then

first rest
The <except suite> is executed, with
<name> bound to the exception Stored Evaluated
explicitly lazily

class Stream(object):
def __init__ (self, first, compute_rest, empty=False)
self.first = first
self._compute_rest = compute_rest
self.empty = empty
self._rest = None
self._computed = False

@property
def rest(self):
assert not self.empty, 'Empty streams have no rest.
if not self._computed:
self._rest = self._compute_rest()
self._computed = True
return self._rest

def make_integer_stream(first=1)
def compute_rest():
return make_integer_stream(first+1)
return Stream(first, compute_rest)

def filter_stream(fn, s):
if s.empty:
return s
def compute_rest():
return filter_stream(fn, s.rest)
if fn(s.first):
return Stream(s.first, compute_rest)
return compute_rest()

de

-+

primes(pos_stream) :
def not_divible(x):
return x % pos_stream.first != 0
def compute_rest():
return primes(filter_stream(not_divible, pos_stream.rest))
return Stream(pos_stream.first, compute_rest)

A basic interpreter has two parts: a parser and an evaluator.

string parser expression Evaluator value
tree
'add(2, 2)' Exp('add', [2, 21) 4

An expression tree is a (hierarchical) data structure
that represents a (nested) expression.

class Exp(object):
"""A call expression in Calculator
def __init__ (self, operator, operands):
self.operator = operator
self.operands = operands

def calc_parse(line):
"""Parse a line of calculator inpu
tokens
expression_tree = analyze(tokens)

Lexical analysis
is also called
tokenization

Lexical analyzer: Analyzes an input string as a sequence of
tokens, which are symbols and delimiters.

>>> tokenize('add(2, mul(4, 6))")

Cradd', "(. 20, o, omult, (A, e,y)y
Symbol: a built-in P Symbol: a q
operator name DT literal el

Syntactic analyzer: Analyzes a sequence of tokens as an
expression tree, which typically includes call expressions.

[tadd','('",'2",",",'3",")"] def analyze(tokens):
e, 20,0, '3,] token = analyze_token(tokens.pop(0))
if type(token) in (int, float):
return token
else:
['2 .30 tokens.pop(0) # Remove (
return Exp(token, analyze_operands(tokens))
['2',",",'3",")'] def analyze_operands(tokens):
operands = []
Pass 1 Pass 2 while tokens[0] != ')':
if operands:
[',','3',""1 ['3" "] tokens.pop(0) # Remove ,

)
[')"] operands.append(analyze(tokens))
[1 tokens.pop(0) # Remove)
return operands

def calc_eval(exp):
"""Evaluate a Calculator expression."""
if type(exp) in (int, float):
return exp
elif type(exp) == Exp:
arguments = list(map(calc_eval, exp.operands))
return calc_apply(exp.operator, arguments)

Numbers are
self-evaluating

def calc_apply(operator, args):
"""Apply the named operator to a list of args.

if operator in ('add', '+')
Dispatch on
operator name

return sum(args)

Implement operator
logic in Python

def read_eval_print_loop():
"""Run a read-eval-print loop for calculator.
while True:
expression_tree = calc_parse(input('calc> "))
print(calc_eval(expression_tree))

class Letters(object): >>> letters = Letters()
"""An iterator over letters.""" >>> letters._ next_ ()
def __init_ (self): 'a'
self.current = 'a’ >>> letters.__next_ ()
def _ next_ (self): 'b'
if self.current > 'd': >>> letters.__next_ ()
raise StopIteration ‘¢!
result = self.current >>> letters._ next_ ()
self.current = chr(ord(result)+1) d'
return result >>> letters.__next_ ()
def iter_ (self): Traceback

return self StopIteration

def letters_generator(): >>> for item in Letters():

"""A generator function.""" print(item)
current = 'a' a
while current <= 'd': b

yield current ;

current = chr(ord(current)+1)

class LetterIterable(object):
"""An iterable over letters.""" >>> try:

def _ iter__ (self): while True:

current = 'a’ item = i.__next__ ()

while current <= 'd': print(item)
yield current except StoplIteration:
current = chr(ord(current)+1) pass

anocw

>>> i = Letters().__iter__()

CS 61A Final Exam Study Guide - Page 2

Words are strings without spaces, representing text, numbers, Sy parser Liine Evaluator

and boolean values.

Sentences are immutable sequences of words and sentences

['run',

? print "hello ? print [hello world]
hello hello world ;
? print "sum ? show [hello world] ﬁolénﬁog; A L Another Logo
9 090 sentence
sum [hello world] sentence
? print "2
2 The logo_eval function dispatches on expression form:
© A primitive expression is a word that can be interpreted as a
Sentences can be constructed from words or sentences number, True, or False. Primitives are self evaluating.
t outout t taini n + A variable is looked up in the current environment.
sentence l{ pu ta stfentence cgn alnln% a h - A procedure definition creates a new user-defined procedure.
e ergen S of two iez inces.t npu - A quoted expression evaluates to the text of the quotation,
words are converted to sentences. which is a string without the preceding quote. Sentences are
list Output a sentence containing the quoted and evaluate to themselves.
two inputs. - A call expression is evaluated with apply_procedure.
fput Output a sentence containing the
first input and all elements in the Eval

eval_line

second input. Evaluate a line

Evaluate the

i . logo_eval
The run procedure evaluates a sentence as a line of Logo code next expression go_

and outputs its value:

? run [print sum 1 2]

Apply a named procedure apply_procedure

Operand
expressions

Apply

14
Evaluate n operands

E

collect_args

Procedure definition is a special form, not a call expression

Apply a procedure to
a sequence of arguments
[Procedure nami-] uormal parameter

? toidouble ? print double 4 Logo binds variable names to values, as does Python.
An environment stores name bindings in a sequence of frames

end 8 Each frame can have at most one value bound to a given name.
en

The make procedure adds or changes variable bindings:

? make "x 2

Client-server Vs Peer-to-peer) . .
Values bound to names are looked up using variable expressions:

? print :x

2
FRAMES PROCEDURES
? to f :x
> make "z sum :x :y
z 13 fi— f :ix I_ > end

g:——1 make "z sum :x :y ? tog :x iy
L ,I fosum :x :x
Division of labor among E—— g ix iy
all computers x: 3 e

v

> end
Applications: yi 7 fosum :ix :x 2 g37
Appropriate for . Igata storage g ? print :z
dispensing a service » Communication R
Clignts mgke requests - Large-scale computation (I) Dynamic 13
from server All computers send and x: 6 Sielefpling]
Server listens for receive data.
requests and responds All computer contribute f
to them. resources: read
Many clients, but * Disk space for loop(™ for line in file: ¥
only 1 server. * Memory next_coroutine.send(line) (yield) — wait for next send

« Processing power

I send — activate (yield) .)
Anatomy of a e T W
A 1101000110 B network message i Baternin Lne:

print(line)
—— match

:> def read(text, next_coroutine):

for line in text.split():

>>> text = 'dig dog bog.' next_coroutine.send(line)
SENDER Where to send a response >>> matcher = match('og') next_coroutine.close()
>>> matcher.__next_ () X
RECIPIENT Where to route message Looking for og def mapch(;?atterjn). ,
>>> read(text. matcher) print('Looking for + pattern)
Data, signal, encoded dog try:
CONTENT video, text, etc. bog. while True:
=== Done === s = (yield)
if pattern in s:
print(s)
X =5 x =5 def make_withdraw(balance) except GeneratorExit:
balance_lock = Lock() print("=== Done ===")
X = square(x) X =X + 1 X = square(x) X = x + 1 def withdraw(amount):
nonlocal balance
try to acquire the lock
P1 P2 P1 P2 balance_lock.acquire()
read x: 5 read x: 5 # once successful, enter the critical section
calc 5*5: 25 read x: 5 read x: 5 if amount > balance: .
write 25 -> x |calc 5+1: 6 calc 5*%5: 25 calc 5+1: 6 print("Insufficient funds")
write 6 -> x write 6 -> x else:
Wwrite 25 -> x balance = balance - amount
print(balance)
x = 25 # upon exiting the critical section, release the lock

balance_lock.release()

