
RLISTS, TREES, AND ORDERS OF GROWTH 8
COMPUTER SCIENCE 61A

October 22, 2012

1 Recursive Lists

We’ve already seen Rlists implemented as recursive pairs, and we’ve drawn box-and-
pointer representing their structure. What we’ll go through today is an object implemen-
tation.

We can construct an Rlist like so:

s = Rlist(1, Rlist(2, Rlist(3)))

For a given Rlist s, remember that it has two main attributes:

• s.first: the actual item stored in the current index of the Rlist

• s.rest: the rest of the Rlist sequence, represented recursively as another Rlist

There is also Rlist.empty, which represents an empty Rlist and is usually used to denote
the end of an Rlist.

1.1 Questions

1. Write a function len rlist that takes an Rlist and returns its length.

def len_rlist(s):

1



DISCUSSION 8: RLISTS, TREES, AND ORDERS OF GROWTH Page 2
2. Write a function getitem rlist that takes an Rlist and an index and returns the

element at that index.

>>> s = Rlist(2, Rlist(4, Rlist(5)))
>>> getitem_rlist(s, 1)
4

def getitem_rlist(s, index):

3. Write a function insert rlist that takes an Rlist, index, and item and inserts that
item at the that index.

>>> s = Rlist(2, Rlist(4, Rlist(5)))
>>> insert_rlist(s, 1, 3)
>>> s
Rlist(2, Rlist(3, Rlist(4, Rlist(5))))

def insert_rlist(s, index, value):

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong



DISCUSSION 8: RLISTS, TREES, AND ORDERS OF GROWTH Page 3

2 Trees

In computer science, trees are recursive data structures that are widely used in various
settings. This is a diagram of a simple tree.

Notice that the tree branches downward – in computer science, the root of a tree starts at
the top, and the leaves are at the bottom.

A Tree consists of two components: an entry and children.

1. Entry: Each tree houses one item (entry). The entry could be numbers, strings, tuples,
etc.

2. Children: All the trees branching out from a node.

Some terminology regarding trees:

• Parent node: A node that has children. Parent nodes can have multiple children.

• Child node: A node that has a parent. A child node can only belong to one parent.

• Root: The top node. There is only one root. Because every other node branches
directly or indirectly from the root, it is possible to start from the root and reach any
other node in the tree. The root is, of course, a parent – it is the only node that is not
a child. For example, the node that contains the 2 at the top is the root.

• Leaf: Nodes that have no children. For example, the nodes that contain the bottom
2, 5, 11, and 4 are leaves. The node that contains 9 is not a leaf, since it has one child.

• Subtree: Notice that each child of a parent is itself the root of a smaller tree (for
example, the node containing 7 is the root of another tree). This is why trees are
recursive data structures: trees are made up of subtrees, which are trees themselves.

• Depth: How far away a node is from the root. In other words, how many generations
away from the root is the specific child node? In the diagram, the node containing 7
has depth 1; the node containing 6 has depth 2. We define the root of a tree to have
depth 0.

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong



DISCUSSION 8: RLISTS, TREES, AND ORDERS OF GROWTH Page 4
• Height: The depth of the lowest leaf. In the diagram, the nodes containing 5, 11, and

4 are all the “lowest leaves,” and they have depth 3. Thus, the entire tree has height
3.

In Computer Science, there are many different types of trees – some vary in the number
of children each node has, and others vary in the structure of the tree. For now, we’re
focusing on binary trees, trees that have at most two children from a node.

2.1 Our Implementation

For a given Tree t, here are the attributes in our implementation:

• t.entry: returns the entry housed inside the root

• t.left and t.right: returns the tree on the respective side

• t.is leaf: returns True if the tree has no children

2.2 Questions

1. Define a function square tree that squares every item in t. You can assume that
every item is a number.

def square_tree(t):
""" Mutates a Tree t by squaring all its elements """

2. Define a function height that returns the height of a Tree. The height of a Tree is
defined as the length of the longest path from the root node down to a leaf node. If a
Tree just consists of a root with no children, its height is 0.

Hint: Use the builtin Python function max.

def height(t):
"""Returns the height of the Tree t."""

3. Let’s actually define tree size, which returns how many items the Tree t contains.

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong



DISCUSSION 8: RLISTS, TREES, AND ORDERS OF GROWTH Page 5
def tree_size(t):

"""Returns the number of items in a Tree t."""

4. Define the procedure find path that, given an Tree t and a entry entry, returns a
tuple containing the nodes along the path required to get from the root of t to the
entry. If entry is not present in t, return False. Assume that the elements in t are
unique.

For instance, for the following tree, find path should return:

>>> find_path(tree_ex, 5)
(2, 7, 6, 5)

def find_path(t, entry):

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong



DISCUSSION 8: RLISTS, TREES, AND ORDERS OF GROWTH Page 6

3 Orders of Growth

When we talk about the efficiency of a procedure (at least for now), we are often interested
in how much more expensive it is to run the procedure with a larger input. That is, as
the size of the input grows, how do the speed of the procedure and the space its process
occupies grow?

For expressing all of these, we use what is called the Big-Theta notation. For example, if
we say the running time of a procedure foo is in Θ(n2), we mean that the running time of
the process, R(n), will grow proportionally to the square of the size of the input n. More
generally, we can say that foo is in some Θ(f(n)) if there exist some constants k1 and k2
such that

k1 · f(n) ≤ R(n) ≤ k2 · f(n) (1)

for n > N , where N is sufficiently large.

This is a mathematical definition of big-Theta notation. To prove that foo is in Θ(f(n)),
we only need to find constants k1 and k2 where the above holds.

There is also another way to express orders of growth: big-Oh notation. This denotes
the worst case complexity of a procedure, whereas big-Theta notation gives a rough ap-
proximation of the actual complexity. Still, big-Oh notation can be useful when it is not
possible to find a big-Theta. The mathematical definition of big-Oh is, for some values k1
and n,

R(n) ≤ k1 × f(n) (2)

for n > N , where N is sufficiently large.

For example, O(n2) states that a function’s worst case run time would be in quadratic
time. This does not mean the function will never be slower than quadratic time; in fact, it
might very well run in linear or even constant time!

Fortunately, in CS61A, we’re not that concerned with rigorous mathematical proofs (you’ll
get the painful details in CS61B!). What we want you to develop in CS61A is the intuition
to guess the orders of growth for certain procedures.

3.1 Kinds of Growth

Here are some common orders of growth, ranked from best to worst:

• Θ(1) — constant time takes the same amount of time regardless of input size

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong



DISCUSSION 8: RLISTS, TREES, AND ORDERS OF GROWTH Page 7
• Θ(log n) — logarithmic time

• Θ(n) — linear time

• Θ(n3), Θ(n3), etc. — polynomial time

• Θ(2n) — exponential time (”intractable”; these are really, really horrible)

3.2 Orders of Growth in Time

“Time,” for us, basically refers to the number of recursive calls or the number of times the
suite of a while loop executes. Intuitively, the more recursive calls we make, the more
time it takes to execute the function.

• If the function contains only primitive procedures like + or ∗, then it is constant time
– Θ(1).

• If the function is recursive, you need to:

– Count the number of recursive calls that will be made, given input n.

– Count how much time it takes to process the input per recursive call.

The answer is usually the product of the above two. For example, given a fruit basket
with 10 apples, how long does it take for me to process the whole basket? Well, I’ll
recursively call my eat procedure, which eats one apple at a time (so I’ll call the
procedure 10 times). Each time I eat an apple, it takes me 30 minutes. So the total
amount of time is just 30 × 10 = 300 minutes!

• If the function contains calls of helper functions that are not constant-time, then you
need to take orders of growth of the helper functions into consideration as well. In
general, how much time the helper function takes would be included.

• When we talk about orders of growth, we don’t really care about constant factors. So
if you get something like Θ(1000000n), this is really Θ(n). We can also usually ignore
lower-order terms. For example, if we get something like Θ(n3 + n2 + 4n + 399), we
can take it to be Θ(n3).

3.3 Questions

What is the order of growth in time for the following functions?

1. def factorial(n):
if n == 0:

return 1
return n * factorial(n - 1)

def sum_of_factorial(n):

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong



DISCUSSION 8: RLISTS, TREES, AND ORDERS OF GROWTH Page 8
if n == 0:

return 1
else:

return factorial(n) + sum_of_factorial(n - 1)

2. def fibonacci(n):
if n == 1:

return 0
elif n == 2:

return 1
else:

return fibonacci(n - 1) + fibonacci(n - 2)

3. def fib_iter(n):
prev, cur, i = 0, 1, 1
while i < n:

prev, curr = curr, prev + curr
i += 1

return curr

4. def mod_7(n):
if n % 8 == 0:

return 0
else:

return 1 + mod_7(n - 1)

5. Given:

def bar(n):
if n % 2 == 1:

return n + 1
return n

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong



DISCUSSION 8: RLISTS, TREES, AND ORDERS OF GROWTH Page 9

def foo(n):
if n < 1:

return 2
if n % 2 == 0:

return foo(n - 1) + foo(n - 2)
else:

return 1 + foo(n - 2)

What is the order of growth of foo(bar(n))?

6. def bonk(n):
sum = 0
while n >= 2:

sum += n
n = n / 2

return sum

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong


