HIGHER ORDER FUNCTIONS

COMPUTER SCIENCE 61A

September 10, 2012

Warmup Questions

1. Here is one method to check if a number is prime:

def is_prime(n):
k = 2
while k < n:
if n % k ==
return False
k += 1
return True

How does this function work?

This is a decent way of testing if a number is prime, but looping k all the way to n
might be a bit cumbersome. As a little bonus question, can you think of a better place
to stop?



DISCUSSION 2: HIGHER ORDER FUNCTIONS Page 2
Using the is_prime function, fill in the following procedure, which generates the n'"
prime number. For example, the 2"? prime number is 3, the 5" prime number is 11,
and so on.

def nth prime(n):

2. Now, what if we wanted to print a sequence of primes up to the n'* prime. What
would be a simple way to do this?

3. The Fibonacci sequence is a famous sequence in mathematics where each term is
generated by adding the two previous terms: 0,1,1,2,3,5,8,13,21, 34,55, ... Using a
while loop, write a function that would find the n'" Fibonacci number. For example,
the 4" number would be 2 and the 6" number would be 5.

def nth fibo(n):

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong



Di1SCUSSION 2: HIGHER ORDER FUNCTIONS Page 3

Environment Diagrams

Environment diagrams will feature prominently in CS61A, so here is one to try for prac-
tice. Environment diagrams can help you understand difficult coding problems, and also
give you an idea of what’s happening inside the interpreter.

Write the environment diagram for the following code:

>>> from operator import add
>>> def curry2(f):
return lambda x: lambda y: f(x, V)

>>> make_adder = curry?2(add)
>>> add_three = make_adder (3)
>>> five = add_three (2)

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong



Di1SCUSSION 2: HIGHER ORDER FUNCTIONS Page 4

Procedures

A procedure that manipulates other procedures as data is called a higher order function
(HOF). For instance, a HOF can be a procedure that takes procedures as arguments, re-
turns a procedure as its value, or both.

Procedures as Argument Values

Suppose we would like to square or double every natural number from 1 to n and print
the result as we go. Using the functions square and double, each of which are functions
that take one argument that do as their name imply; fill out the following:

def square_every_ number (n) :

def double_every_number (n) :

Note that the only thing different about square_every number and double_every_number
is just what function we call on n when we print it. Wouldn't it be nice to generalize pro-
cedures of this form into something more convenient? When we pass in the number,
couldn’t we specify, also, what we want to do to each number < n.

To do that, we can define a higher order procedure called every. every takes in the
procedure you want to apply to each element as an argument, and applies it to n natural
numbers starting from 1. So to write square_every_number, we can simply do:

def square_every_number (n) :

every (square, n)
Equivalently, to write double_every_number, we can write:
def double_every number (n) :

every (double, n)

Note: These functions are not pure — as defined below, every will actually print values
to the screen.

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong



Di1SCUSSION 2: HIGHER ORDER FUNCTIONS Page 5

Questions

1. Now implement the function every that takes in a function func and a number n,
and applies that function to the first » numbers from 1 and prints the result along the
way:

def every (func, n):

2. Similarly, implement the function keep, which takes in a function condition cond
and a number n, and only prints a number from 1 to n to the screen if it fulfills the
condition:

def keep(cond, n):

Procedures as Return Values

This problem comes up often: write a procedure that, given something, returns a function
that does something else. The key message — conveniently emphasized — is that your
procedure is supposed to return a procedure. For now, we can do so by defining an
internal function within our function definition and then returning the internal function.

def my_wicked_procedure (blah) :
def my_wicked_ helper (more_blah) :

return my_wicked_helper

That is the common form for such problems but we will learn another way to do this
shortly.

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong



Di1SCUSSION 2: HIGHER ORDER FUNCTIONS Page 6

Moar Questions

1. Write a procedure and_add_one that takes a function £ as an argument (such that £
is a function of one argument). It should return a function that takes one argument,
and does the same thing as £, except adds one to the result.

def and_add_one(f):

2. Write a procedure and_add that takes a function £ and a number n as arguments.
It should return a function that takes one argument, and does the same thing as the
function argument, except adds n to the result.

def and_add(f, n):

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong



DISCUSSION 2: HIGHER ORDER FUNCTIONS Page 7
3. Python represents a programming community, and for things to run smoothly, there
are some standards to keep things consistent. The following is the recommended
style for documentation so that collaboration with other python programmers be-
comes standard and easy. Write your code at the very end, using accumulate from
homework:

def identity(x):
return x

def lazy_accumulate (f, start, n, term):
nwon
Takes the same arguments as accumulate from homework and
returns a function that takes a second integer m and
will return the result of accumulating the first n
numbers starting at 1 using f and combining that with
the next m integers.

Arguments:

f - the function for the first set of numbers.

start - the value to combine with the first value 1in
the sequence.

n — the stopping point for the first set of numbers.

term - function to be applied to each number before
combining.

Returns:

A function (call it h) h(m) where m is the number of
additional values to combine.

>>> # The following does

>>> # (1 + 2 + 3 + 4 +5) + (6 + 7+ 8+ 9+ 10)
>>> lazy accumulate (add, 0, 5, identity) (5)

55

mmn

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong



Di1SCUSSION 2: HIGHER ORDER FUNCTIONS Page 8

Lambda Expressions

One way of returning functions is by using nested inner functions. But, what if the func-
tion you need is very short and will only be used in one particular situation? The solution
would be the 1ambda expression. A 1ambda expression has the following syntax:

lambda <args> : <body>

With this simple expression, you can define functions on the fly, without having to use
def statements and without having to give them names. In other words, lambda expres-
sions allow you to reate anonymous functions. There is a catch though: The body must
be a single expression, which is also the return value of the function.

One other difference between using the de £ keyword and 1ambda expressions we would
like to point out is that def is a statement, while 1lambda is an expression. Evaluating
a def statement will have a side effect, namely it creates a new function binding in the
current environment. On the other hand, evaluating a 1 ambda expression will not change
the environment unless we do something with the function created by the lambda. For
instance, we could assign it to a variable or pass it as a function argument.

One last question

1. What would Python do?

>>> square = lambda x: x * X
>>> def double (f):
def doubler (x):
return f (f(x))
return doubler
>>> foo = double (square)
>>> foo (4)

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong



	Warmup Questions
	Environment Diagrams
	Procedures
	Procedures as Argument Values
	Questions
	Procedures as Return Values
	Moar Questions
	Lambda Expressions
	One last question

