LOGIC PROGRAMMING

COMPUTER SCIENCE 61A

November 26, 2012

Introduction

Over the semester, we have been using imperative programming — a programming style
where code is written as a set of instructions for the computer. In this section, we intro-
duce declarative programming — code that declares what we want, not how to do it. Logic
programming (what we are learning) is a type of declarative programming.

In this class, we will be using a language called Logic. The Logic language was based on
the Scheme project and also borrows a few ideas from Prolog.

Simple Facts and Queries

In Logic, you can define facts. Facts are simply Scheme lists of relations and relations are
simply Scheme lists of symbols. Remember, relations are NOT call expressions; instead,
relations are used to express relationships between symbols.

Here’s an example of a fact:
> (fact (sells supermarket groceries))
This line of code says: “This is a fact: supermarkets sell groceries”. When we declare

something as a fact, we are simply saying that it is a true statement. You can think of a
fact as an axiom, i.e., something that is fundamentally true.

“sells” is a quality that relates two things, “supermarket” and “groceries.” What are the
values of “supermarket” and “groceries”? They have no values! They are symbols — sym-
bols are Logic’s primitives.

DISCUSSION 13: LOGIC PROGRAMMING Page 2
Having defined some facts, we can make queries — in other words, we can ask Logic for
information based on the facts that we’ve defined:

> (query (sells supermarket groceries))
Success!

> (query (sells supermarket books))
Failure.

> (query (sells supermarket ?stuff))
Success!

stuff: groceries

The first query asks, ”Is it a fact that supermarkets sell groceries?” and the second query
asks, ”Is it a fact that supermarkets sell books?”. The third query above is equivalent to
asking “What do supermarkets sell?” Logic replies that supermarkets sell groceries, based
on the previously defined fact.

Note that ?stuff is a variable in Logic, whereas supermarket isasymbol. supermarket
is always going to be supermarket, but ?stuff is unknown — it is only after the query
that we know what the value of ?stuff is.

A similar query is
> (query (sells ?place groceries))

Success!
place: supermarket

This query is equivalent to asking “Which places sell groceries?” Once again, Logic
replies based on the previously defined fact.

We can also query both parameters:

> (query (sells ?place ?stuff))
Success!

place: supermarket

stuff: groceries

This is equivalent to asking “What are places that sell stuff, and what stuff do they sell?”
Logic will tell you what each variable should be based on previously defined facts.

In Logic, we can also model hierarchical data by nesting relations inside of other relations.
For example:

(fact (person (name bob) (age 49)))
(fact (person (name alice) (age 20)))

declares two facts. The first fact asserts that there exists a person whose name is Bob and
whose age is 49. The second fact asserts that there exists a person whose name is Alice
and whose age is 20.

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 13: LOGIC PROGRAMMING Page 3
Moreover, we can query the facts that we previously defined:

> (query (person (name ?first_name) (age 49)))
Success!

first_name: bob

> (query (person (name bob) ?age))

Success'!

age: (age 20)

The first query asks, “What is the name of a person whose age is 49?” and the second
query asks, “What is the age of a person named Bob?”.

2.1 Questions

1. Write a fact that checks if two elements are equal.

2. Define a set of facts for a “mall,” which has the following qualities:
¢ malls sell shoes and clothes
e malls are larger than supermarkets

¢ malls are popular

3. Define a set of facts to model the table of data below.

Name Number | Color | Type
Bulbasaur 001 Green | Grass
Charmander | 004 Red Fire
Squirtle 007 Blue Water
Caterpie 010 Green | Bug
Pikachu 025 Yellow | Electric

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 13: LOGIC PROGRAMMING Page 4

Complex Facts

In Logic, you can also define more complex facts. For example:

> (fact (sells_same ?storel ?store?2)
(sells 7?storel ?item)
(sells 7?store?2 ?item)

)

Here is the basic syntax of a complex fact:

(fact (‘‘conclusion’’)
(Y ‘hypothesisl’ ')
(Y ‘hypothesis2’ ')

etc.

)

This is equivalent to saying “the conclusion is true if all the hypotheses are true.” If even
one of the hypotheses is false, the conclusion will also be false.

For example, the sel1s_same complex fact is equivalent to saying “storel and store?2
sell the same thing if storel sells itemand store2 also sells the same item.”

You can perform fact-checking with complex facts, just like with simple facts:

> (fact (sells farmers_market groceries))

> (fact (sells starbucks coffee))

> (query (sells_same supermarket farmers_market))
Success!

> (query (sells_same supermarket starbucks))
Failure.

We can also do querying:

> (query (sells_same ?store supermarket))
Success'!
store: farmers_market

This is equivalent to asking “what store sells the same thing as a supermarket?”

We can also ask “what stores sell the same thing?”

> (query (sells_same ?storel ?store?))
Success!

storel: supermarket

store2: farmers_market

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 13: LOGIC PROGRAMMING Page 5
3.1 Questions

1. Write simple and complex facts for every_other, a relation between two lists that is

satisfied if and only if the second list is the same as the first list, but with every other
element removed.

> (query (every_other (frodo merry sam pippin) ?x))
Success!

x: (frodo sam)

> (query (every-other (gandalf) 7?x))

Success!

x: (gandalf)

2. Write facts for prefix, a relation between two lists that is satisfied if and only if
elements of the first list are the first elements of the second list, in order.

> (query (prefix (being for the) (being for the
benefit of mister kite)))
Success!

> (query (prefix (for no one) (for no one)))
Success!

> (query (prefix () (got to get you into my life)))
Success'!

> (query (prefix (want 1 to) (i want to hold your hand)))
Failure.

CS61A Fall 2012: John Denero, with

Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 13: LOGIC PROGRAMMING Page 6
3. Write facts for sublist, a relation between two lists that is satisfied if and only if the
first is a consecutive sublist of the second. For example:

> (query (sublist (give) (never gonna give you up)))

Success!

> (query (sublist (you up) (never gonna give you up)))
Success'!

> (query (sublist (never gonna give) (never gonna give you up)))
Success!

> (query (sublist () (never gonna give you up)))

Success'!

> (query (sublist (never give up) (never gonna give you up)))
Failure.

> (query (sublist (let you down) (never gonna give you up)))
Failure.

Hint: You will want to use the prefix fact that you previously defined.

4. Write a set of facts to implement the subs relation with components o1d, new, input,
and output. The first two are symbols; the last two can be symbols or lists. The out-
put should be the same as the input except that every appearance of o1d is replaced
by new.

> (query (subs romeo fred (romeo oh romeo why art thou romeo) ?x))
Success!
x: (fred oh fred why art thou fred)

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

	Introduction
	Simple Facts and Queries
	Questions

	Complex Facts
	Questions

