
TAIL RECURSION, SCOPE, AND PROJECT 4 11
COMPUTER SCIENCE 61A

Noveber 12, 2012

1 Tail Recursion

Today we will look at Tail Recursion and Tail Call Optimizations in Scheme, and how
they relate to iteration in Python. Let’s start with an example:

From Lecture Notes: ”Implementations of Scheme are required to be properly tail-recursive.
This allows the execution of an iterative computation in constant space, even if the itera-
tive computation is described by a syntactically recursive procedure.”

def exp(b, n):
#Theta(N) time and space
if n == 0:

return 1
return b * exp(b, n-1)

def exp(b, n):
#Theta(N) time but Theta(1) space
total = 1
for _ in range(n):

total = total * b
return total

But we don’t have for and while iterative constructs in scheme (well we do, but we don’t
use them), so how do we accomplish same idea?

1

DISCUSSION 11: TAIL RECURSION, SCOPE, AND PROJECT 4 Page 2
1.1 Optimized Tail Call

Factorial:
(define (factorial n k)

(if (= n 0)
k
(factorial (- n 1) (* k n))))

Note the similarities and differences of the above procedure to a python version using a
while loop.

def factorial(n, k):
while n > 0:

n, k = n-1, k*n
return k

So how exactly is this an optimization, let’s look at how the two different versions of
scheme factorial (one recursive, and one tail recursive), and how they grow in space.

Procedure Growth in Space (from Wikipedia)
Recursive:

call factorial (3)
3 * call factorial(2)
3 * 2 * call factorial(1)
3 * 2 * 1 * call factorial(0)
3 * 2 * 1 * 1

3 * 2 * 1
3 * 2

return 6

More efficient tail recursive, in terms of both space and time:

call factorial (3)
call fact (3 1)
call fact (2 3)
call fact (1 6)
call fact (0 6)
return 6

Note that the optimization we are witnessing here is not an optimization in time, but in
space. In most examples in this class we have looked at time growth of a procedure, but
a procedure can also be analyzed by how much space it uses either in memory, cache,
or CPU. These topics will be explored more in depth CS61C. Here, both these functions
(one recursive, one tail recursive), both are linear recursions that both take linear time.

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 11: TAIL RECURSION, SCOPE, AND PROJECT 4 Page 3
But the optimization comes in that the tail recursive version uses constant space (or space
that does not grow with respect to the input), where as the recursive version also grows
linearly in space with respect to its input.

Exact Definition of Tail Recursive Calls (from lecture) :
A procedure call that has not yet returned is active. Some procedure calls are tail calls. A
Scheme interpreter should support an unbounded number of active tail calls. A tail call
is a call expression in a tail context:

**Note: A call expression is not a tail call if more computation is still required in the calling
procedure. Linear recursions can often be re-written to use tail calls.

1.2 Questions

1. Write a function last, which takes in a list and returns the last element of the list:

(define (last s))

2. Write the function that returns the nth Fibonacci number (try writing recursive first,
then think tail recursive).

;Tree-recursive version:

(define (fib-tree n)

;Tail-recursive version:

(define (fib n)

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 11: TAIL RECURSION, SCOPE, AND PROJECT 4 Page 4
3. Write a function that inserts number n into a sorted list of numbers, s. (once again try

writing recursive version first, then think tail-recursive).

;Non-tail-recursive version

(define (insert-non-tail n s)

; From lecture: reverse-iter

(define (reverse-iter s result)
(if (null? s) result
(reverse-iter (cdr s) (cons (car s) result))))

;Tail-recursive version (Hint: Use a helper function)

(define (insert n s)

Note: Not all recursive procedures can be rewritten in a tail recursive pattern, and the
tricky part is understanding which ones can’t, for instance the subset-sum problem.

2 Lexical Scope Vs Dynamic Scope

To this point in the class, we have only talked about Lexical Scoping. Remember that the
scoping rule is the environment diagram rule that decides what a new frame’s parent is
when the frame is created. So when a procedure is called, a new frame is created, that
frame needs a parent, and whatever scoping rule you are using will decide what that

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 11: TAIL RECURSION, SCOPE, AND PROJECT 4 Page 5
parent frame is. Basically, this rule determines what will be in scope for that new frame,
or what variables it will be able to see.

While some languages (not many) let you choose which scoping to use when defining a
variable, most use lexical. However, dynamic is usually a good step towards fully under-
standing lexical scoping, and so it is good to learn both. (You will have to implement both
in your project).

• Lexical scope: The parent of a frame is the environment in which a procedure was
defined.

• Dynamic scope: The parent of a frame is the environment in which a procedure was
called

Lexical Scoping also relates heavily to closures, a closure (in simplest terms) is a procedure
that is also bound with the environment frame it was defined in, this is necessary so that
the procedure will know what frame to extend when it is called, otherwise, it would not
be able to tell. This is why in your project, and lambda has a frame instance variable.

While python is lexically scoped, you will need to be able to draw environment diagrams
using both scoping rules, and it is possible that a question like this could show up on the
final!

2.1 Problems

1. Draw the environment diagram for the following code, first with Lexical Scoping, and
then with Dynamic Scoping. :

x = 10
def foo(x):

return x * bar(2)
def bar(y):

return y + x
foo(3)

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 11: TAIL RECURSION, SCOPE, AND PROJECT 4 Page 6
2. def make_counter(x):

def count(m):
nonlocal x
if m == ’inc’:

x += 1
elif m== ’count’:

return x
return count

c1 = make_counter(5)
c2 = make_counter(7)
c1(’inc’)
c1(’inc’)
c1(’count’)

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 11: TAIL RECURSION, SCOPE, AND PROJECT 4 Page 7

3 Project 4: Scheme Interpreter

For the rest of discussion, we will discuss your project at a high level, this is a chance to
really look at the code, and go over as a group what is going on with the skeleton code
you have been given for the project, and the ideas you are expected to implement, please
ask questions.

For your project you need to fill in the missing pieces of the scheme interpreter. This
involves completing the missing aspects of the read-eval-print loop. You will implement
a few basic functions to parse scheme expressions for the reader, and then besides that
most of the project will be spent working in the eval phase.

Eval, for most complex interpreters, involves a loop of its own, called the eval-apply loop.
To this point, our interpreters have been simple. In our calculator interpreter, we called
eval, which called apply, which finished. But now that we want to have user defined
procedures, which have their own bodies which need to be evaluated, so apply may now
also need to call eval to interpret an answer. This will be an example of Mutual Recursion.

There will also be more bells and whistles wrapped around this which you will have to
figure out, but for now lets look at the meat of the code for the project. Some comments
have been included to help you understand what is going on. Your TA will explain this
code.

def scheme_eval(expr, env):
"""Evaluate Scheme expression EXPR in environment ENV."""

#The expression must not be none
if expr is None:

raise SchemeError("Cannot evaluate an undefined expression.")

Evaluate Atoms
"""If the atom is a symbol (either a primitive procedure symbol,
or variable, look it up!)"""
if scheme_symbolp(expr):

return env.lookup(expr)
if its primitive (number, etc), simply return
elif scheme_atomp(expr):

return expr

All non-atomic expressions are lists.
if not scheme_listp(expr):

raise SchemeError("malformed list: {0}".format(str(expr)))
first, rest = expr.first, expr.second

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 11: TAIL RECURSION, SCOPE, AND PROJECT 4 Page 8

#Special Form Evaluation Comes Next
Evaluate Combinations
if first in LOGIC_FORMS:

return scheme_eval(LOGIC_FORMS[first](rest, env), env)
#evaluate lambda special form
elif first == "lambda":

return do_lambda_form(rest, env)
#evaluate mu special form
elif first == "mu":

return do_mu_form(rest)
#evaluate define special form
elif first == "define":

return do_define_form(rest, env)
#evaluate quote special form
elif first == "quote":

return do_quote_form(rest)
#evaluate let special form
elif first == "let":

expr, env = do_let_form(rest, env)
return scheme_eval(expr, env)

#not a special form, apply normal scheme rules of evaluation
else:

"""evaluate the operator (in case its a variable, this is
different from calculator)"""
procedure = scheme_eval(first, env)

#map scheme_eval to args, eval in current env
args = rest.map(lambda operand: scheme_eval(operand, env))

#apply procedure to evaluated args
return scheme_apply(procedure, args, env)

def scheme_apply(procedure, args, env):
"""Apply Scheme PROCEDURE to argument values
ARGS in environment ENV."""
#handle primitive, happen by magic through underlying python
if isinstance(procedure, PrimitiveProcedure):

return apply_primitive(procedure, args, env)
#handle lambdas, use lexical scope
elif isinstance(procedure, LambdaProcedure):

"*** YOUR CODE HERE ***"
#handle mus, use dynamic scope

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 11: TAIL RECURSION, SCOPE, AND PROJECT 4 Page 9
elif isinstance(procedure, MuProcedure):

"*** YOUR CODE HERE ***"
else:

raise SchemeError("Cannot call {0}".format(str(procedure)))

#Primitives don t create a new env, get applied in current env
def apply_primitive(procedure, args, env):

"""Apply PrimitiveProcedure PROCEDURE to a
Scheme list of ARGS in ENV."""

Try and answer the following questions, there is not an exact answer to these questions
that we are looking for, but rather this is to get you to think about interpreters, and
scheme-eval, you can just describe your answers. These are questions you will have to
answer in your project in order to write the code.

3.1 Questions

1. Why does scheme-eval check in order of atoms, symbols, special forms, then nor-
mal application? What would go wrong if it didn’t?

2. Why does the operator to scheme-eval also have to be evaluated (unlike calculator),
what could the operator be?

3. When a procedure is called, which frame are its arguments evaluated in?

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 11: TAIL RECURSION, SCOPE, AND PROJECT 4 Page 10
4. Why does scheme-eval pass the current env to scheme-apply?

5. Should scheme-apply’s implementation call scheme-eval? If yes then where?

6. What frame do primitive procedures get evaluated in? Should they create a new
frame? Should lambdas or mus?

7. True or False: All define does is point variables to values in the current frame, it does
not actually make a procedure.

3.2 Frames

Now lets look at Frames, and the differences between Primitives, Lambdas, and Mus Each
class keeps tracks of the items that are necessary for it to behave properly. Each Frame

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 11: TAIL RECURSION, SCOPE, AND PROJECT 4 Page 11
maintains a dictionary of bindings of variables to values, and a parent frame, which can
be None (for instance for the global frame). The Frame also supports methods to lookup
variables starting from its given location on its environment chain, and to add variables
to its bindings.

The Lambda and Mu classes are for User Defined Procedures, they keep track of formals,
which is a list of argument names, and a body, which will be another scheme expression.
The difference between the two is that lambdas also keep track of the environment they
were created in, why? We will answer that in a minute.

There is also PrimitiveProcedures which are neither lambdas nor mus, they are builtin
and do not require a new frame to be evaluated. This is because for our purposes, as
always, we dont care how primitives happen, we just assume they happen magically.
In general, no frames are created for the application of primitives, but some may need
a frame, and so we have the option to pass a frame in, and you will deal with these
cases in the project. For our interpreter we will let underlying python handle the scheme
primitives. So then a PrimitiveProcedure in our interpreter is an instance of a class that
maintains the underlying python function it uses, an env if necessary, plus a static list of
all Primitives.

Here is the skeleton code from the project for the Frame, LambaProcedure, MuProcedure,
and PrimitiveProcedure classes.

class Frame(object):
"""An environment frame binds Scheme symbols to Scheme values."""

def __init__(self, parent):
"""An empty frame with a PARENT frame (that may be None)."""
self.bindings = {}
self.parent = parent

def lookup(self, symbol):
"""Return the value bound to SYMBOL.

Errors if SYMBOL is not found."""
raise SchemeError("unknown identifier: {0}".format(str(symbol)))

def global_frame(self):
"""The global environment at the root of the parent chain."""
e = self
while e.parent is not None:

e = e.parent
return e

def make_call_frame(self, formals, vals):

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 11: TAIL RECURSION, SCOPE, AND PROJECT 4 Page 12
"""Return a new local frame whose parent is SELF,
in which the symbols in the Scheme formal parameter
list FORMALS are bound to the Scheme
values in the Scheme value list VALS. """
frame = Frame(self)
return frame

def define(self, sym, val):
"""Define Scheme symbol SYM to have value VAL in SELF."""
self.bindings[sym] = val

class LambdaProcedure(object):
"""A procedure defined by a lambda expression

or the complex define form."""

def __init__(self, formals, body, env):
"""A procedure whose formal parameter list is
FORMALS (a Scheme list), whose body is the single
Scheme expression BODY, and whose parent
environment is the Frame ENV. A lambda expression
containing multiple expressions, such as
(lambda (x) (display x) (+ x 1)) can be handled by using
(begin (display x) (+ x 1)) as the body."""
self.formals = formals
self.body = body
self.env = env

class MuProcedure(object):
"""A procedure defined by a mu expression,

which has dynamic scope."""

def __init__(self, formals, body):
"""A procedure whose formal parameter list is
FORMALS (a Scheme list), whose body is the
single Scheme expression BODY. A mu expression
containing multiple expressions, such as
(mu (x) (display x) (+ x 1)) can be handled by using
(begin (display x) (+ x 1)) as the body."""
self.formals = formals
self.body = body

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 11: TAIL RECURSION, SCOPE, AND PROJECT 4 Page 13
class PrimitiveProcedure:

"""A Scheme procedure defined as a Python function."""

def __init__(self, fn, use_env=False):
self.fn = fn
self.use_env = use_env

_PRIMITIVES = []

Once again, here are some high level questions to answer about this code, and to get you
thinking about the project if you havent already.

3.3 Questions

1. Write pseudocode or a description of how you would implement lookup for frames.

2. When would make_call_frame be used? How does this relate to Mus?

3. Why do lambdas have an env but mus don’t, when would you use the env instance
variable in lambdas?

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

	Tail Recursion
	Optimized Tail Call
	Questions

	Lexical Scope Vs Dynamic Scope
	Problems

	Project 4: Scheme Interpreter
	Questions
	Frames
	Questions

