
EXCEPTIONS, CALCULATOR 10
COMPUTER SCIENCE 61A

November 5th, 2012

We are beginning to dive into the realm of interpreting computer programs - that is, writ-
ing programs that understand programs. In order to do so, we’ll have to examine pro-
gramming languages in-depth. The Calculator language, a subset of Scheme, will be the
first of these examples.

In today’s discussion, we’ll be looking at implementing Calculator using regular Python.
We’ll also take a look at Exceptions, a mechanism for handling unexpected execution -
quite common when handling user input.

1 Exceptions

Up to this point in the semester, we have assumed that the input to our functions are
always correct, and thus have not done any error handling. However, functions can often
have large domains, and we want our functions to handle erroneous input gracefully.
This is where exceptions come in.

Exceptions provide a general mechanism for adding error-handling logic to programs.
Raising an exception is a technique for interrupting the normal flow of execution in a
program, signaling that some exceptional circumstance has arisen.

An exception is an object instance of a class that inherits, either directly or indirectly, from
the BaseException class. The following is an example of how to raise an exception:

>>> raise Exception(’An error occurred’)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
Exception: An error occurred

1

DISCUSSION 10: EXCEPTIONS, CALCULATOR Page 2
Notice how the string ’An error occurred’ is an argument to the Exception object being
created, and the string is part of what Python prints out in response to the exception being
raised.

If the exception is raised while with a try statement, then the interpreter will immedi-
ately look for an except statement that handles the type of exception being raised. try
and except statements allow programs to respond to unexpected arguments and other
errors gracefully, rather than terminating entirely.

Here’s how to structure try and except statements:

try:
<try suite>

except <exception class> as <name>:
<except suite>

except <exception class> as <name>:
<except suite>

1.1 Questions

1. Fill in all the blanks to produce the desired output:

>>> try:
x = _____

except _______________ as ___:
print(handling a , type(e))
x = ____

handling a <class ZeroDivisionError>
>>> x
9001

2. Write the function safe square that uses exceptions to print ’Incorrect argument
type’ when anything other than an int or float class is given as an argument. Oth-
erwise, safe square should multiply the argument by itself. A useful fact is that a
TypeError is raised when * is given incorrect arguments.

def safe_square(x):

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 10: EXCEPTIONS, CALCULATOR Page 3
3. Predict the output of each of the following lines, assuming safe square is imple-

mented as described in the previous question.

>>> safe_square(’hello’)

>>> safe_square(’hello * 5)

>>> safe_square(’hello’ * ’hello’)

>>> safe_square(1 * 2.5)

>>> safe_square(1/ 0)

2 Calculator

For now, our Calculator language will be a Scheme-syntax language that can handle the
four basic arithmetic operations. These operations can be nested and can take varying
numbers of arguments. Here’s a couple examples of Calculator in action:

> (+ 2 2)
4

> (- 5)
-5

> (* (+ 1 2) (+ 2 3))
15

Our goal now is to write an interpreter for this Calculator language. The job of an inter-
preter is, given an expression, evaluate its meaning. So let’s talk about expressions.

2.1 Representing Expressions

There are two kinds of expressions. A call expression is a Scheme list - the first element
is the operator, and each subsequent element is an operand. A primitive expression is an
operator symbol or number. When we type a line at the Calculator prompt and hit enter,
we’ve just sent an expression to the interpreter.

To represent Scheme lists in Python, we’ll be using Pair objects. The class definition is
below. Note the usage of exceptions:

class Pair(object):

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 10: EXCEPTIONS, CALCULATOR Page 4
def __init__(self, first, second):

self.first = first
self.second = second

def __len__(self):
n, second = 1, self.second
while isinstance(second, Pair):

n += 1
second = second.second

if second is not nil:
raise TypeError("length attempted on improper list")

return n

def __getitem__(self, k):
if k < 0:

raise IndexError("negative index into list")
j, y = 0, self
while j < k:

if y.second is nil:
raise IndexError("list index out of bounds")

elif not isinstance(y.second, Pair):
raise TypeError("ill-formed list")

j, y = j + 1, y.second
return y.first

def map(self, fn):
"""Returns a Scheme list after mapping Python function
fn over self."""
mapped = fn(self.first)
if self.second is nil or isinstance(self.second, Pair):

return Pair(mapped, self.second.map(fn))
else:

raise TypeError("ill-formed list")

def to_py_list(self):
"""Returns a Python list containing the elements of this
Scheme list."""
y, result = self, []
while y is not nil:

result += [y.first]
if not isinstance(y.second, Pair) or y.second is not nil:

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 10: EXCEPTIONS, CALCULATOR Page 5
raise TypeError("ill-formed list")

y = y.second
return result

class nil(object):
"""The empty list"""

def __len__(self):
return 0

def map(self, fn):
return self

nil = nil() #nil now refers to a single instance of nil class

2.2 Questions

1. Translate the following Python representation of Calculator expressions into the proper
Scheme-syntax:

>>> Pair(’+’, Pair(1, Pair(2, Pair(3, Pair(4, nil)))))

>>>Pair(’+’, Pair(’1’, Pair(Pair(’*’, Pair(2, Pair(3, nil))), nil)))

2. Translate the following Calculator expression into calls to the Pair constructor.

> (+ 1 2 (- 3 4))

2.3 Evaluation

So what is evaluation? Evaluation discovers the form of an expression and executes a
corresponding evaluation rule.

Primitive expressions are evaluated directly. Call expressions are evaluated recursively:
(1) Evaluate each operand expression, (2) Collect their values as a list of arguments, and
(3) Apply the named operator to the argument list.

Here’s calc eval:

def calc_eval(exp):
if not isinstance(exp, Pair): #expression is primitive

return exp
else:

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 10: EXCEPTIONS, CALCULATOR Page 6
operator, operands = exp.first, exp.second
args = operands.map(calc_eval).to_py_list()
return calc_apply(operator, args)

As you can see, all we’ve done is follow the rules of evaluation outlined above. If the ex-
pression is primitive (i.e. not a Scheme list), simply return it. Else, evaluate the operands
and apply the operator to the evaluated operands.

How do we apply the operator? We’ll use calc apply, with dispatching on the operator
name:

def calc_apply(operator, args):
if operator == ’+’:

return sum(args)
elif operator == ’-’:

if len(args) == 1:
return -args[0]

else:
return sum(args[0], [-args for args in args[1:]])

elif operator == ’*’:
return reduce(mul, args, 1)

Depending on what the operator is, we can match it to a corresponding Python call. Each
conditional clause above handles the application of one operator.

Something very important to keep in mind: calc eval deals with expressions, calc apply
deals with values.

2.4 Questions

1. Suppose we typed each of the following expressions into the Calculator interpreter.
How many calls to calc evalwould they each generate? How many calls to calc apply?

> (+ 2 4 6 8)

> (+ 2 (* 4 (- 6 8)))

2. The - operator will fail if given no arguments. Add error handling to raise an excep-
tion when this situation is encountered (the type of exception is unimportant).

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

DISCUSSION 10: EXCEPTIONS, CALCULATOR Page 7
3. We also want to be able to perform division, as in (/ 4 2). Supplement the existing

code to handle this. If division by 0 is attempted, or if there are less than 2 arguments
supplied, you should raise an exception (the type of exception is unimportant).

4. Alyssa P. Hacker and Ben Bitdiddle are also tasked with implementing the and oper-
ator, as in (and (= 1 2) (< 3 4)). Ben says this is easy: they just have to follow
the same process as in implementing * and /. Alyssa is not so sure. Who’s right?

5. Now that you’ve had a chance to think about it, you decide to try implementing and
yourself. You may assume the conditional operators (e.g. <, >, =, etc) have already
been implemented for you.

CS61A Fall 2012: John Denero, with
Akihiro Matsukawa, Hamilton Nguyen, Phillip Carpenter, Steven Tang, Varun Pai, Joy Jeng, Keegan
Mann, Allen Nguyen, Stephen Martinis, Andrew Nguyen, Albert Wu, Julia Oh, Shu Zhong

	Exceptions
	Questions

	Calculator
	Representing Expressions
	Questions
	Evaluation
	Questions

