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Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

Recursive list representation of the sequence 1, 2, 3, 4:

. » None

o

W —Fe

Recursive lists are recursive: the rest of the list 1s a list.
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Recursive List Class

Methods can be recursive as well!

class Rlist(object):
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Recursive List Class

Methods can be recursive as well!

class Rlist(object):

class EmptyList(object):
def len_ (self):
return 0

empty = EmptyList()
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Recursive List Class

Methods can be recursive as well!

class Rlist(object):

class EmptyList(object):
def len_ (self):
return 0

empty = EmptyList()

def init_ (self, first, rest=empty):
self.first = first
self.rest = rest
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Recursive List Class

This part was all
Methods can be recursive as well! 1n Homework 6

-----------------------------------------------------------------------------

class EmptyList(object):
def len_ (self):
return 0

empty = EmptyList()

def _ init__ (self, first, rest=empty): !
self.first = first '
self.rest = rest

-----------------------------------------------------------------------------
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Recursive List Class

This part was all
Methods can be recursive as well! 1n Homework 6

-----------------------------------------------------------------------------

class EmptyList(object):
def len_ (self):
return 0

empty = EmptyList()

def _ init__ (self, first, rest=empty): !
self.first = first '
self.rest = rest

-----------------------------------------------------------------------------

def len_ (self):
return 1 + len(self.rest)
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Recursive List Class

Methods can be recursive as well!

|

his part was al
in Homework 6

9

-----------------------------------------------------------------------------

class Rlist(object):

class EmptyList(object):
def len_ (self):
return 0

empty = EmptyList()

def 1init_ (self, first,
self.first = first
self.rest = rest

rest=empty):§

-----------------------------------------------------------------------------

----------------------------------------------------

‘def __len_ (self):

return 1 + len(self. rest)

------------------------------------------------------
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Recursive List Class

This part was all
Methods can be recursive as well! 1n Homework 6

-----------------------------------------------------------------------------
------------------------------

‘def  Ten (self)°‘ , E
i return 0 N There's the E
--------------------------------- base case! |:

empty = EmptyList()

def  init_ (self, first, rest=empty): :
self.first = first
self.rest = rest

-----------------------------------------------------------------------------

-----------------------------------------------------

‘def __len_ (self): : .
i return 1 + len(self.rest): <i:Ye5r this callj}

------------------------------------------------------

1S recursive
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Recursive List Class

This part was all
Methods can be recursive as well! 1n Homework 6

-----------------------------------------------------------------------------

-----------------------------

L4

‘def  Ten (self)°‘ , E
i return 0 N There's the E
--------------------------------- base case! |:

empty = EmptyList()

def  init_ (self, first, rest=empty): :
self.first = first
self.rest = rest

-----------------------------------------------------------------------------

-----------------------------------------------------

rdef _ len_ (self): ; .
i return 1 + len(self.rest): Yes, this call
------------------------------------------------------ 1S recursive

def  getitem (self, 1):
1f 1 == 0

return self.first

return self.rest[i1-1]
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Recursive List Class

This part was all
Methods can be recursive as well! 1n Homework 6

-----------------------------------------------------------------------------

-----------------------------

L4

‘def  Ten (self)°‘ , E
i return 0 N There's the E
--------------------------------- base case! |:

empty = EmptyList()

def  init_ (self, first, rest=empty): :
self.first = first
self.rest = rest

-----------------------------------------------------------------------------

-----------------------------------------------------

rdef _ len_ (self): ; .
i return 1 + len(self.rest): Yes, this call
------------------------------------------------------ 1S recursive

def  getitem (self, 1):
1f 1 == 0

return self.first

return self.rest[i1-1]

Demo
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Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.
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Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

>>> s = R1list (1, Rlist(2, Rlist(3)))
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Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

>>> s = R1list (1, Rlist(2, Rlist(3)))

>>> s.rest
RList(2, RLlist(3))
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Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

>>> s = R1list (1, Rlist(2, Rlist(3)))

>>> s.rest
RList(2, RLlist(3))

>>> extend rlist(s.rest, s)
Rlist(2, R1ist(3, R1list(l, Rlist(2, R1list(3)))))
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Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

>>> s = R1list (1, Rlist(2, Rlist(3)))

>>> s.rest
RList(2, RLlist(3))

>>> extend rlist(s.rest, s)
Rlist(2, R1ist(3, R1list(l, Rlist(2, R1list(3)))))

def extend rlist(sl, s2):

Monday, October 17, 2011



Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

>>> s = R1list (1, Rlist(2, Rlist(3)))

>>> s.rest
RList(2, RLlist(3))

>>> extend rlist(s.rest, s)
Rlist(2, R1ist(3, R1list(l, Rlist(2, R1list(3)))))

def extend rlist(sl, s2):
if sl is Rlist.empty:
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Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

>>> s = R1list (1, Rlist(2, Rlist(3)))

>>> s.rest
RList(2, RLlist(3))

>>> extend rlist(s.rest, s)
Rlist(2, R1ist(3, R1list(l, Rlist(2, R1list(3)))))

def extend rlist(sl, s2):
if sl is Rlist.empty:

return s2
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Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

>>> s = R1list (1, Rlist(2, Rlist(3)))

>>> s.rest
RList(2, RLlist(3))

>>> extend rlist(s.rest, s)
Rlist(2, R1ist(3, R1list(l, Rlist(2, R1list(3)))))

def extend rlist(sl, s2):
if sl is Rlist.empty:
return s2
return Rlist(sl.first, extend rlist(sl.rest, s2))
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Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.
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Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
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Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):

if s 1s Rlist.empty:
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Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
if s 1s Rlist.empty:

return s
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Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
if s 1s Rlist.empty:
return s

return Rlist(fn(s.first), map rlist(s.rest, fn))
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Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
if s 1s Rlist.empty:
return s

return Rlist(fn(s.first), map rlist(s.rest, fn))

>>> def filter rlist(s, fn):

Monday, October 17, 2011



Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
if s 1s Rlist.empty:
return s

return Rlist(fn(s.first), map rlist(s.rest, fn))

>>> def filter rlist(s, fn):
if s 1s Rlist.empty:
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Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
if s 1s Rlist.empty:
return s

return Rlist(fn(s.first), map rlist(s.rest, fn))
>>> def filter rlist(s, fn):

if s 1s Rlist.empty:

return s
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Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
if s 1s Rlist.empty:
return s

return Rlist(fn(s.first), map rlist(s.rest, fn))

>>> def filter rlist(s, fn):
if s 1s Rlist.empty:
return s

rest = filter rlist(s.rest, fn)
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Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
if s 1s Rlist.empty:
return s

return Rlist(fn(s.first), map rlist(s.rest, fn))

>>> def filter rlist(s, fn):
if s 1s Rlist.empty:
return s
rest = filter rlist(s.rest, fn)
if fn(s.first):
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Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
if s 1s Rlist.empty:
return s

return Rlist(fn(s.first), map rlist(s.rest, fn))

>>> def filter rlist(s, fn):
if s 1s Rlist.empty:
return s
rest = filter rlist(s.rest, fn)
if fn(s.first):

return Rlist(s.first, rest)

Monday, October 17, 2011



Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
if s 1s Rlist.empty:
return s

return Rlist(fn(s.first), map rlist(s.rest, fn))

>>> def filter rlist(s, fn):
if s 1s Rlist.empty:
return s
rest = filter rlist(s.rest, fn)
if fn(s.first):
return Rlist(s.first, rest)

return rest
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Tree Structured Data

Nested Sequences are Hierarchical Structures.
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Tree Structured Data

Nested Sequences are Hierarchical Structures.

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)
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Tree Structured Data

Nested Sequences are Hierarchical Structures.

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)

/
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Tree Structured Data

Nested Sequences are Hierarchical Structures.

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)

-----------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------
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-----------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------
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-----------------------------------------------------------------------------------------
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Tree Structured Data

Nested Sequences are Hierarchical Structures.

>>> ((1, 2), 3, 4)
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-----------------------------------------------------------------------------------------
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Tree Structured Data

Nested Sequences are Hierarchical Structures.

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)
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Recursive Tree Processing

Tree operations typically make recursive calls on branches
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Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):
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Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):
if type(tree) != tuple:

Monday, October 17, 2011



Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):
if type(tree) != tuple:
return 1
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Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):
if type(tree) != tuple:
return 1

return sum(map(count leaves, tree))

Monday, October 17, 2011



Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):
if type(tree) != tuple:
return 1

return sum(map(count leaves, tree))

def map _tree(tree, fn):
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Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):
if type(tree) != tuple:
return 1

return sum(map(count leaves, tree))

def map _tree(tree, fn):

if type(tree) != tuple:
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Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):
if type(tree) != tuple:
return 1

return sum(map(count leaves, tree))

def map _tree(tree, fn):
if type(tree) != tuple:

return fn(tree)
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Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):
if type(tree) != tuple:
return 1

return sum(map(count leaves, tree))

def map_ tree(tree, fn):
if type(tree) != tuple:
return fn(tree)

return tuple(map _tree(branch, fn) for branch 1in tree)
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Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):
if type(tree) != tuple:
return 1

return sum(map(count leaves, tree))

def map_ tree(tree, fn):
if type(tree) != tuple:
return fn(tree)

return tuple(map _tree(branch, fn) for branch 1in tree)

Demo
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Trees with Internal Node Values
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Trees with Internal Node Values

Trees need not only have values at their leaves.
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Trees with Internal Node Values

Trees need not only have values at their leaves.

fib(6)
fib(4) fib(5)
/ AN
fib(2) fib(3)
- N fib(3)
1 fib(1) fib(2) // N yZ

\
0 1 ‘
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Trees with Internal Node Values

Trees need not only have values at their leaves.
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Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
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Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
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Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
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Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
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Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right
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Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def fib tree(n):
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Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def fib tree(n):

if n ==
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Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def fib tree(n):
if n ==

return Tree(0)
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Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def fib tree(n):
if n ==
return Tree(0)

if n ==
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Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def fib tree(n):
if n ==
return Tree(0)
if n ==

return Tree(1l)
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Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def fib tree(n):
if n ==
return Tree(0)
if n ==
return Tree(1l)
left = fib_tree(n-2)
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Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def fib tree(n):
if n ==
return Tree(0)
if n ==
return Tree(1l)
left = fib_tree(n-2)
right = fib _tree(n-1)
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Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):

def 1init_ (self, entry,

self.entry = entry
self.left = left
self.right = right

def fib tree(n):
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if n ==

return Tree(0)
if n ==

return Tree(1l)
left = fib_tree(n-2)
right = fib _tree(n-1)

return Tree(left.entry + right.entry,

left=None,

left,

right=None) :

right)



Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):

def 1init_ (self, entry,

self.entry = entry
self.left = left
self.right = right

def fib tree(n):
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if n ==

return Tree(0)
if n ==

return Tree(1l)
left = fib_tree(n-2)
right = fib _tree(n-1)

return Tree(left.entry + right.entry,

left=None,

left,

right=None) :

Demo

right)
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One more built-in Python container type
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Set literals are enclosed 1n braces
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Sets
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Set literals are enclosed 1n braces

Duplicate elements are removed on construction
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Sets

One more built-in Python container type
Set literals are enclosed 1in braces
Duplicate elements are removed on construction

Sets are unordered, just like dictionary entries
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Sets

One more built-in Python container type
Set literals are enclosed 1in braces
Duplicate elements are removed on construction

Sets are unordered, just like dictionary entries

>>> s = {3, 2, 1, 4, 4}
>>> g

{1, 2, 3, 4}
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Sets

One more built-in Python container type
Set literals are enclosed 1in braces
Duplicate elements are removed on construction

Sets are unordered, just like dictionary entries

>>> s = {3, 2, 1, 4, 4}
>>> g

{1, 2, 3, 4}

>>> 3 1n S
True
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Sets

One more built-in Python container type
Set literals are enclosed 1in braces
Duplicate elements are removed on construction

Sets are unordered, just like dictionary entries

>>> s = {3, 2, 1, 4, 4}
>>> g
{1, 2, 3, 4}

>>> 3 1n s

True
>>> len(s)
4
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Sets

One more built-in Python container type
Set literals are enclosed 1in braces
Duplicate elements are removed on construction

Sets are unordered, just like dictionary entries

>>> s = {3, 2, 1, 4, 4}
>>> g

{1, 2, 3, 4}

>>> 3 1n s

True

>>> len(s)

4

>>> s . union ({1, 5})
{1, 2, 3, 4, 5}
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Sets

One more built-in Python container type
Set literals are enclosed 1in braces
Duplicate elements are removed on construction

Sets are unordered, just like dictionary entries

>>> s = {3, 2, 1, 4, 4}
>>> g

{1, 2, 3, 4}

>>> 3 in s

True

>>> len(s)

4

>>> s . union({1l, 5})

{1, 2, 3, 4, 5}

>>> s.jntersection({6, 5, 4, 3})
{3, 4}
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Sets

One more built-in Python container type
Set literals are enclosed 1in braces
Duplicate elements are removed on construction

Sets are unordered, just like dictionary entries

>>> s = {3, 2, 1, 4, 4}
>>> g

{1, 2, 3, 4}

>>> 3 in s

True

>>> len(s)

4

>>> s . union({1, 5})

{1, 2, 3, 4, 5}

>>> s.jntersection({6, 5, 4, 3})

{3, 4} Demo
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