61A Lecture 22

Wednesday, October 19

Monday, October 17, 2011

Closure Property of Data

Monday, October 17, 2011

Closure Property of Data

A tuple can contain another tuple as an element.

Monday, October 17, 2011

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

Monday, October 17, 2011

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

Recursive list representation of the sequence 1, 2, 3, 4:

Monday, October 17, 2011

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

Recursive list representation of the sequence 1, 2, 3, 4:

Monday, October 17, 2011

W —Fe

o

None

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

Recursive list representation of the sequence 1, 2, 3, 4:

. » None

o

W —Fe

Recursive lists are recursive: the rest of the list 1s a list.

Monday, October 17, 2011

Recursive List Class

Monday, October 17, 2011

Recursive List Class

Methods can be recursive as well!

Monday, October 17, 2011

Recursive List Class

Methods can be recursive as well!

class Rlist(object):

Monday, October 17, 2011

Recursive List Class

Methods can be recursive as well!

class Rlist(object):

class EmptyList(object):
def len_ (self):
return 0

empty = EmptyList()

Monday, October 17, 2011

Recursive List Class

Methods can be recursive as well!

class Rlist(object):

class EmptyList(object):
def len_ (self):
return 0

empty = EmptyList()

def init_ (self, first, rest=empty):
self.first = first
self.rest = rest

Monday, October 17, 2011

Recursive List Class

This part was all
Methods can be recursive as well! 1n Homework 6

class EmptyList(object):
def len_ (self):
return 0

empty = EmptyList()

def _ init__ (self, first, rest=empty): !
self.first = first '
self.rest = rest

Monday, October 17, 2011

Recursive List Class

This part was all
Methods can be recursive as well! 1n Homework 6

class EmptyList(object):
def len_ (self):
return 0

empty = EmptyList()

def _ init__ (self, first, rest=empty): !
self.first = first '
self.rest = rest

def len_ (self):
return 1 + len(self.rest)

Monday, October 17, 2011

Recursive List Class

Methods can be recursive as well!

|

his part was al
in Homework 6

9

class Rlist(object):

class EmptyList(object):
def len_ (self):
return 0

empty = EmptyList()

def 1init_ (self, first,
self.first = first
self.rest = rest

rest=empty):§

--

‘def __len_ (self):

return 1 + len(self. rest)

--

Monday, October 17, 2011

Yes, this call
1S recursive

)

Recursive List Class

This part was all
Methods can be recursive as well! 1n Homework 6

‘def Ten (self)°‘ , E
i return 0 N There's the E
--------------------------------- base case! |:

empty = EmptyList()

def init_ (self, first, rest=empty): :
self.first = first
self.rest = rest

‘def __len_ (self): : .
i return 1 + len(self.rest): <i:Ye5r this callj}

--

1S recursive

Monday, October 17, 2011

Recursive List Class

This part was all
Methods can be recursive as well! 1n Homework 6

L4

‘def Ten (self)°‘ , E
i return 0 N There's the E
--------------------------------- base case! |:

empty = EmptyList()

def init_ (self, first, rest=empty): :
self.first = first
self.rest = rest

rdef _ len_ (self): ; .
i return 1 + len(self.rest): Yes, this call
-- 1S recursive

def getitem (self, 1):
1f 1 == 0

return self.first

return self.rest[i1-1]

Monday, October 17, 2011

Recursive List Class

This part was all
Methods can be recursive as well! 1n Homework 6

L4

‘def Ten (self)°‘ , E
i return 0 N There's the E
--------------------------------- base case! |:

empty = EmptyList()

def init_ (self, first, rest=empty): :
self.first = first
self.rest = rest

rdef _ len_ (self): ; .
i return 1 + len(self.rest): Yes, this call
-- 1S recursive

def getitem (self, 1):
1f 1 == 0

return self.first

return self.rest[i1-1]

Demo

Monday, October 17, 2011

Recursive Operations on Recursive Lists

Monday, October 17, 2011

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

Monday, October 17, 2011

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

>>> s = R1list (1, Rlist(2, Rlist(3)))

Monday, October 17, 2011

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

>>> s = R1list (1, Rlist(2, Rlist(3)))

>>> s.rest
RList(2, RLlist(3))

Monday, October 17, 2011

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

>>> s = R1list (1, Rlist(2, Rlist(3)))

>>> s.rest
RList(2, RLlist(3))

>>> extend rlist(s.rest, s)
Rlist(2, R1ist(3, R1list(l, Rlist(2, R1list(3)))))

Monday, October 17, 2011

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

>>> s = R1list (1, Rlist(2, Rlist(3)))

>>> s.rest
RList(2, RLlist(3))

>>> extend rlist(s.rest, s)
Rlist(2, R1ist(3, R1list(l, Rlist(2, R1list(3)))))

def extend rlist(sl, s2):

Monday, October 17, 2011

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

>>> s = R1list (1, Rlist(2, Rlist(3)))

>>> s.rest
RList(2, RLlist(3))

>>> extend rlist(s.rest, s)
Rlist(2, R1ist(3, R1list(l, Rlist(2, R1list(3)))))

def extend rlist(sl, s2):
if sl is Rlist.empty:

Monday, October 17, 2011

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

>>> s = R1list (1, Rlist(2, Rlist(3)))

>>> s.rest
RList(2, RLlist(3))

>>> extend rlist(s.rest, s)
Rlist(2, R1ist(3, R1list(l, Rlist(2, R1list(3)))))

def extend rlist(sl, s2):
if sl is Rlist.empty:

return s2

Monday, October 17, 2011

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

>>> s = R1list (1, Rlist(2, Rlist(3)))

>>> s.rest
RList(2, RLlist(3))

>>> extend rlist(s.rest, s)
Rlist(2, R1ist(3, R1list(l, Rlist(2, R1list(3)))))

def extend rlist(sl, s2):
if sl is Rlist.empty:
return s2
return Rlist(sl.first, extend rlist(sl.rest, s2))

Monday, October 17, 2011

Map and Filter on Recursive Lists

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):

if s 1s Rlist.empty:

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
if s 1s Rlist.empty:

return s

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
if s 1s Rlist.empty:
return s

return Rlist(fn(s.first), map rlist(s.rest, fn))

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
if s 1s Rlist.empty:
return s

return Rlist(fn(s.first), map rlist(s.rest, fn))

>>> def filter rlist(s, fn):

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
if s 1s Rlist.empty:
return s

return Rlist(fn(s.first), map rlist(s.rest, fn))

>>> def filter rlist(s, fn):
if s 1s Rlist.empty:

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
if s 1s Rlist.empty:
return s

return Rlist(fn(s.first), map rlist(s.rest, fn))
>>> def filter rlist(s, fn):

if s 1s Rlist.empty:

return s

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
if s 1s Rlist.empty:
return s

return Rlist(fn(s.first), map rlist(s.rest, fn))

>>> def filter rlist(s, fn):
if s 1s Rlist.empty:
return s

rest = filter rlist(s.rest, fn)

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
if s 1s Rlist.empty:
return s

return Rlist(fn(s.first), map rlist(s.rest, fn))

>>> def filter rlist(s, fn):
if s 1s Rlist.empty:
return s
rest = filter rlist(s.rest, fn)
if fn(s.first):

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
if s 1s Rlist.empty:
return s

return Rlist(fn(s.first), map rlist(s.rest, fn))

>>> def filter rlist(s, fn):
if s 1s Rlist.empty:
return s
rest = filter rlist(s.rest, fn)
if fn(s.first):

return Rlist(s.first, rest)

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

>>> def map rlist(s, fn):
if s 1s Rlist.empty:
return s

return Rlist(fn(s.first), map rlist(s.rest, fn))

>>> def filter rlist(s, fn):
if s 1s Rlist.empty:
return s
rest = filter rlist(s.rest, fn)
if fn(s.first):
return Rlist(s.first, rest)

return rest

Monday, October 17, 2011

Tree Structured Data

Monday, October 17, 2011

Tree Structured Data

Nested Sequences are Hierarchical Structures.

Monday, October 17, 2011

Tree Structured Data

Nested Sequences are Hierarchical Structures.

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)

Monday, October 17, 2011

Tree Structured Data

Nested Sequences are Hierarchical Structures.

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)

/

Monday, October 17, 2011

Tree Structured Data

Nested Sequences are Hierarchical Structures.

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)

Monday, October 17, 2011

Tree Structured Data

Nested Sequences are Hierarchical Structures.

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)

Monday, October 17, 2011

Tree Structured Data

Nested Sequences are Hierarchical Structures.

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)

Monday, October 17, 2011

Tree Structured Data

Nested Sequences are Hierarchical Structures.

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)

Monday, October 17, 2011

Tree Structured Data

Nested Sequences are Hierarchical Structures.

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)

Monday, October 17, 2011

Tree Structured Data

Nested Sequences are Hierarchical Structures.

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)

Monday, October 17, 2011

Recursive Tree Processing

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):
if type(tree) != tuple:

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):
if type(tree) != tuple:
return 1

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):
if type(tree) != tuple:
return 1

return sum(map(count leaves, tree))

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):
if type(tree) != tuple:
return 1

return sum(map(count leaves, tree))

def map _tree(tree, fn):

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):
if type(tree) != tuple:
return 1

return sum(map(count leaves, tree))

def map _tree(tree, fn):

if type(tree) != tuple:

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):
if type(tree) != tuple:
return 1

return sum(map(count leaves, tree))

def map _tree(tree, fn):
if type(tree) != tuple:

return fn(tree)

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):
if type(tree) != tuple:
return 1

return sum(map(count leaves, tree))

def map_ tree(tree, fn):
if type(tree) != tuple:
return fn(tree)

return tuple(map _tree(branch, fn) for branch 1in tree)

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):
if type(tree) != tuple:
return 1

return sum(map(count leaves, tree))

def map_ tree(tree, fn):
if type(tree) != tuple:
return fn(tree)

return tuple(map _tree(branch, fn) for branch 1in tree)

Demo

Monday, October 17, 2011

Trees with Internal Node Values

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

fib(6)
fib(4) fib(5)
/ AN
fib(2) fib(3)
- N fib(3)
1 fib(1) fib(2) // N yZ

\
0 1 ‘

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def fib tree(n):

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def fib tree(n):

if n ==

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def fib tree(n):
if n ==

return Tree(0)

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def fib tree(n):
if n ==
return Tree(0)

if n ==

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def fib tree(n):
if n ==
return Tree(0)
if n ==

return Tree(1l)

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def fib tree(n):
if n ==
return Tree(0)
if n ==
return Tree(1l)
left = fib_tree(n-2)

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def fib tree(n):
if n ==
return Tree(0)
if n ==
return Tree(1l)
left = fib_tree(n-2)
right = fib _tree(n-1)

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):

def 1init_ (self, entry,

self.entry = entry
self.left = left
self.right = right

def fib tree(n):

Monday, October 17, 2011

if n ==

return Tree(0)
if n ==

return Tree(1l)
left = fib_tree(n-2)
right = fib _tree(n-1)

return Tree(left.entry + right.entry,

left=None,

left,

right=None) :

right)

Trees with Internal Node Values

Trees need not only have values at their leaves.

class Tree(object):

def 1init_ (self, entry,

self.entry = entry
self.left = left
self.right = right

def fib tree(n):

Monday, October 17, 2011

if n ==

return Tree(0)
if n ==

return Tree(1l)
left = fib_tree(n-2)
right = fib _tree(n-1)

return Tree(left.entry + right.entry,

left=None,

left,

right=None) :

Demo

right)

Sets

Monday, October 17, 2011

Sets

One more built-in Python container type

Monday, October 17, 2011

Sets

One more built-in Python container type

Set literals are enclosed 1n braces

Monday, October 17, 2011

Sets

One more built-in Python container type
Set literals are enclosed 1n braces

Duplicate elements are removed on construction

Monday, October 17, 2011

Sets

One more built-in Python container type
Set literals are enclosed 1in braces
Duplicate elements are removed on construction

Sets are unordered, just like dictionary entries

Monday, October 17, 2011

Sets

One more built-in Python container type
Set literals are enclosed 1in braces
Duplicate elements are removed on construction

Sets are unordered, just like dictionary entries

>>> s = {3, 2, 1, 4, 4}
>>> g

{1, 2, 3, 4}

Monday, October 17, 2011

Sets

One more built-in Python container type
Set literals are enclosed 1in braces
Duplicate elements are removed on construction

Sets are unordered, just like dictionary entries

>>> s = {3, 2, 1, 4, 4}
>>> g

{1, 2, 3, 4}

>>> 3 1n S
True

Monday, October 17, 2011

Sets

One more built-in Python container type
Set literals are enclosed 1in braces
Duplicate elements are removed on construction

Sets are unordered, just like dictionary entries

>>> s = {3, 2, 1, 4, 4}
>>> g
{1, 2, 3, 4}

>>> 3 1n s

True
>>> len(s)
4

Monday, October 17, 2011

Sets

One more built-in Python container type
Set literals are enclosed 1in braces
Duplicate elements are removed on construction

Sets are unordered, just like dictionary entries

>>> s = {3, 2, 1, 4, 4}
>>> g

{1, 2, 3, 4}

>>> 3 1n s

True

>>> len(s)

4

>>> s . union ({1, 5})
{1, 2, 3, 4, 5}

Monday, October 17, 2011

Sets

One more built-in Python container type
Set literals are enclosed 1in braces
Duplicate elements are removed on construction

Sets are unordered, just like dictionary entries

>>> s = {3, 2, 1, 4, 4}
>>> g

{1, 2, 3, 4}

>>> 3 in s

True

>>> len(s)

4

>>> s . union({1l, 5})

{1, 2, 3, 4, 5}

>>> s.jntersection({6, 5, 4, 3})
{3, 4}

Monday, October 17, 2011

Sets

One more built-in Python container type
Set literals are enclosed 1in braces
Duplicate elements are removed on construction

Sets are unordered, just like dictionary entries

>>> s = {3, 2, 1, 4, 4}
>>> g

{1, 2, 3, 4}

>>> 3 in s

True

>>> len(s)

4

>>> s . union({1, 5})

{1, 2, 3, 4, 5}

>>> s.jntersection({6, 5, 4, 3})

{3, 4} Demo

Monday, October 17, 2011

