
61A Lecture 22

Wednesday, October 19

Monday, October 17, 2011

Closure Property of Data

2

Monday, October 17, 2011

Closure Property of Data

A tuple can contain another tuple as an element.

2

Monday, October 17, 2011

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

2

Monday, October 17, 2011

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

2

Recursive list representation of the sequence 1, 2, 3, 4:

Monday, October 17, 2011

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

2

1 2 3 4

None

Recursive list representation of the sequence 1, 2, 3, 4:

Monday, October 17, 2011

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

2

1 2 3 4

None

Recursive list representation of the sequence 1, 2, 3, 4:

Recursive lists are recursive: the rest of the list is a list.

Monday, October 17, 2011

Recursive List Class

3

Monday, October 17, 2011

Recursive List Class

Methods can be recursive as well!

3

Monday, October 17, 2011

Recursive List Class

Methods can be recursive as well!

3

 class Rlist(object):

Monday, October 17, 2011

Recursive List Class

Methods can be recursive as well!

3

 class Rlist(object):

 class EmptyList(object):
 def __len__(self):
 return 0

 empty = EmptyList()

Monday, October 17, 2011

Recursive List Class

Methods can be recursive as well!

3

 class Rlist(object):

 class EmptyList(object):
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

Monday, October 17, 2011

Recursive List Class

Methods can be recursive as well!

3

 class Rlist(object):

 class EmptyList(object):
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

This part was all
in Homework 6

Monday, October 17, 2011

Recursive List Class

Methods can be recursive as well!

3

 class Rlist(object):

 class EmptyList(object):
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

 def __len__(self):
 return 1 + len(self.rest)

This part was all
in Homework 6

Monday, October 17, 2011

Recursive List Class

Methods can be recursive as well!

3

 class Rlist(object):

 class EmptyList(object):
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

 def __len__(self):
 return 1 + len(self.rest)

This part was all
in Homework 6

Yes, this call
is recursive

Monday, October 17, 2011

Recursive List Class

Methods can be recursive as well!

3

 class Rlist(object):

 class EmptyList(object):
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

 def __len__(self):
 return 1 + len(self.rest)

This part was all
in Homework 6

Yes, this call
is recursive

There's the
base case!

Monday, October 17, 2011

Recursive List Class

Methods can be recursive as well!

3

 class Rlist(object):

 class EmptyList(object):
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

 def __len__(self):
 return 1 + len(self.rest)

 def __getitem__(self, i):
 if i == 0:
 return self.first
 return self.rest[i-1]

This part was all
in Homework 6

Yes, this call
is recursive

There's the
base case!

Monday, October 17, 2011

Recursive List Class

Methods can be recursive as well!

3

 class Rlist(object):

 class EmptyList(object):
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

 def __len__(self):
 return 1 + len(self.rest)

 def __getitem__(self, i):
 if i == 0:
 return self.first
 return self.rest[i-1]

This part was all
in Homework 6

Yes, this call
is recursive

There's the
base case!

Demo

Monday, October 17, 2011

Recursive Operations on Recursive Lists

4

Monday, October 17, 2011

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

4

Monday, October 17, 2011

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

4

>>> s = Rlist(1, Rlist(2, Rlist(3)))

Monday, October 17, 2011

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

4

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

Monday, October 17, 2011

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

4

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

Monday, October 17, 2011

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

4

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

 def extend_rlist(s1, s2):

Monday, October 17, 2011

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

4

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

 def extend_rlist(s1, s2):

 if s1 is Rlist.empty:

Monday, October 17, 2011

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

4

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

 def extend_rlist(s1, s2):

 if s1 is Rlist.empty:

 return s2

Monday, October 17, 2011

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive
call on the rest of the list.

4

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

 def extend_rlist(s1, s2):

 if s1 is Rlist.empty:

 return s2

 return Rlist(s1.first, extend_rlist(s1.rest, s2))

Monday, October 17, 2011

Map and Filter on Recursive Lists

5

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

5

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

5

>>> def map_rlist(s, fn):

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

5

>>> def map_rlist(s, fn):

 if s is Rlist.empty:

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

5

>>> def map_rlist(s, fn):

 if s is Rlist.empty:

 return s

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

5

>>> def map_rlist(s, fn):

 if s is Rlist.empty:

 return s

 return Rlist(fn(s.first), map_rlist(s.rest, fn))

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

5

>>> def map_rlist(s, fn):

 if s is Rlist.empty:

 return s

 return Rlist(fn(s.first), map_rlist(s.rest, fn))

>>> def filter_rlist(s, fn):

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

5

>>> def map_rlist(s, fn):

 if s is Rlist.empty:

 return s

 return Rlist(fn(s.first), map_rlist(s.rest, fn))

>>> def filter_rlist(s, fn):

 if s is Rlist.empty:

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

5

>>> def map_rlist(s, fn):

 if s is Rlist.empty:

 return s

 return Rlist(fn(s.first), map_rlist(s.rest, fn))

>>> def filter_rlist(s, fn):

 if s is Rlist.empty:

 return s

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

5

>>> def map_rlist(s, fn):

 if s is Rlist.empty:

 return s

 return Rlist(fn(s.first), map_rlist(s.rest, fn))

>>> def filter_rlist(s, fn):

 if s is Rlist.empty:

 return s

 rest = filter_rlist(s.rest, fn)

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

5

>>> def map_rlist(s, fn):

 if s is Rlist.empty:

 return s

 return Rlist(fn(s.first), map_rlist(s.rest, fn))

>>> def filter_rlist(s, fn):

 if s is Rlist.empty:

 return s

 rest = filter_rlist(s.rest, fn)

 if fn(s.first):

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

5

>>> def map_rlist(s, fn):

 if s is Rlist.empty:

 return s

 return Rlist(fn(s.first), map_rlist(s.rest, fn))

>>> def filter_rlist(s, fn):

 if s is Rlist.empty:

 return s

 rest = filter_rlist(s.rest, fn)

 if fn(s.first):

 return Rlist(s.first, rest)

Monday, October 17, 2011

Map and Filter on Recursive Lists

We want operations on a whole list, not an element at a time.

5

>>> def map_rlist(s, fn):

 if s is Rlist.empty:

 return s

 return Rlist(fn(s.first), map_rlist(s.rest, fn))

>>> def filter_rlist(s, fn):

 if s is Rlist.empty:

 return s

 rest = filter_rlist(s.rest, fn)

 if fn(s.first):

 return Rlist(s.first, rest)

 return rest

Monday, October 17, 2011

Tree Structured Data

6

Monday, October 17, 2011

Tree Structured Data

Nested Sequences are Hierarchical Structures.

6

Monday, October 17, 2011

Tree Structured Data

Nested Sequences are Hierarchical Structures.

6

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)

Monday, October 17, 2011

Tree Structured Data

Nested Sequences are Hierarchical Structures.

6

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)

2

4

1

3

Monday, October 17, 2011

Tree Structured Data

Nested Sequences are Hierarchical Structures.

6

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)

2

4

1

3

Tree

Monday, October 17, 2011

Tree Structured Data

Nested Sequences are Hierarchical Structures.

6

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)

2

4

1

3 Tree

Tree

Monday, October 17, 2011

Tree Structured Data

Nested Sequences are Hierarchical Structures.

6

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)

2

4

1

3

Tree

Tree

Tree

Monday, October 17, 2011

Tree Structured Data

Nested Sequences are Hierarchical Structures.

6

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)

2

4

1

3

Tree

Tree

Tree

Tree

Monday, October 17, 2011

Tree Structured Data

Nested Sequences are Hierarchical Structures.

6

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)

2

4

1

3

TreeTree

Tree

Tree

Tree

Monday, October 17, 2011

Tree Structured Data

Nested Sequences are Hierarchical Structures.

6

>>> ((1, 2), 3, 4)
((1, 2), 3, 4)

2

4

1

3

TreeTree

Tree

TreeTree

Tree

Monday, October 17, 2011

Recursive Tree Processing

7

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

7

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

7

 def count_leaves(tree):

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

7

 def count_leaves(tree):

 if type(tree) != tuple:

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

7

 def count_leaves(tree):

 if type(tree) != tuple:

 return 1

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

7

 def count_leaves(tree):

 if type(tree) != tuple:

 return 1

 return sum(map(count_leaves, tree))

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

7

 def count_leaves(tree):

 if type(tree) != tuple:

 return 1

 return sum(map(count_leaves, tree))

 def map_tree(tree, fn):

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

7

 def count_leaves(tree):

 if type(tree) != tuple:

 return 1

 return sum(map(count_leaves, tree))

 def map_tree(tree, fn):

 if type(tree) != tuple:

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

7

 def count_leaves(tree):

 if type(tree) != tuple:

 return 1

 return sum(map(count_leaves, tree))

 def map_tree(tree, fn):

 if type(tree) != tuple:

 return fn(tree)

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

7

 def count_leaves(tree):

 if type(tree) != tuple:

 return 1

 return sum(map(count_leaves, tree))

 def map_tree(tree, fn):

 if type(tree) != tuple:

 return fn(tree)

 return tuple(map_tree(branch, fn) for branch in tree)

Monday, October 17, 2011

Recursive Tree Processing

Tree operations typically make recursive calls on branches

7

 def count_leaves(tree):

 if type(tree) != tuple:

 return 1

 return sum(map(count_leaves, tree))

 def map_tree(tree, fn):

 if type(tree) != tuple:

 return fn(tree)

 return tuple(map_tree(branch, fn) for branch in tree)

Demo

Monday, October 17, 2011

Trees with Internal Node Values

8

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

8

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

8

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

9

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

9

 class Tree(object):

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

9

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

9

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

9

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

9

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

9

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

9

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

9

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

9

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

 if n == 2:

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

9

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

 if n == 2:

 return Tree(1)

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

9

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

 if n == 2:

 return Tree(1)

 left = fib_tree(n-2)

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

9

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

 if n == 2:

 return Tree(1)

 left = fib_tree(n-2)

 right = fib_tree(n-1)

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

9

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

 if n == 2:

 return Tree(1)

 left = fib_tree(n-2)

 right = fib_tree(n-1)

 return Tree(left.entry + right.entry, left, right)

Monday, October 17, 2011

Trees with Internal Node Values

Trees need not only have values at their leaves.

9

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

 if n == 2:

 return Tree(1)

 left = fib_tree(n-2)

 right = fib_tree(n-1)

 return Tree(left.entry + right.entry, left, right)

Demo

Monday, October 17, 2011

Sets

10

Monday, October 17, 2011

Sets

One more built-in Python container type

10

Monday, October 17, 2011

Sets

One more built-in Python container type

• Set literals are enclosed in braces

10

Monday, October 17, 2011

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

10

Monday, October 17, 2011

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets are unordered, just like dictionary entries

10

Monday, October 17, 2011

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets are unordered, just like dictionary entries

10

>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

Monday, October 17, 2011

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets are unordered, just like dictionary entries

10

>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> 3 in s
True

Monday, October 17, 2011

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets are unordered, just like dictionary entries

10

>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> 3 in s
True
>>> len(s)
4

Monday, October 17, 2011

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets are unordered, just like dictionary entries

10

>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> 3 in s
True
>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}

Monday, October 17, 2011

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets are unordered, just like dictionary entries

10

>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> 3 in s
True
>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}
>>> s.intersection({6, 5, 4, 3})
{3, 4}

Monday, October 17, 2011

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets are unordered, just like dictionary entries

10

>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> 3 in s
True
>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}
>>> s.intersection({6, 5, 4, 3})
{3, 4}

Demo

Monday, October 17, 2011

