
61A Lecture 19

Wednesday, October 12

Tuesday, October 11, 2011

What Are Programs?

Once upon a time, people wrote programs on blackboards

Every once in a while, they would "punch in" a program

2

Now, we type programs as text files using editors like Emacs

Programs are just text (or cards) until we interpret them

http://en.wikipedia.org/wiki/File:IBM_Port-A-Punch.jpg

Tuesday, October 11, 2011

http://en.wikipedia.org/wiki/File:IBM_Port-A-Punch.jpg
http://en.wikipedia.org/wiki/File:IBM_Port-A-Punch.jpg

How Are Evaluation Procedures Applied?

3

An interpreter, which determines the meaning
of expressions in a programming language,

is just another program.

The most fundamental idea in computer science:

CS 61A Midterm 1 Study Guide – Page 1

square

square(-2)

mul:

x: -2

square:

square(x):

return mul(x, x)

4

return mul(x, x)

... mul(a,b):

Environments
& Values

Expressions

from operator import mul
def square(x):
 return mul(x, x)
square(-2)

208
mul(add(2, mul(4, 6)), add(3, 5))

add(2, mul(4, 6))
26mul

add 2
mul(4, 6)

mul 4 6

24

add(3, 5)

add 3 5

8

-2
2

-2
None

abs(number):

print(...):

display “-2”

2, 10
1024

pow(x, y):

Pure Functions

Non-Pure Functions

square(-2)
4

return mul(x, x)

The environment
created for the
function body

The existing environment in which
the call expression is evaluated

A name evaluates
to the value
bound to that
name in the
earliest frame
of the current
environment in
which that name
is found.

Defining:

Call expression:

square(x):

return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

return mul(x, x)

Def
statement

Formal parameter

Body

Return
expression

(return statement)

operand: 2+2
argument: 4operator: square

function: square

Intrinsic name

4

16Argument

Return value

Frame

a:
b:

Name 2 Value

Binding

5

The global
frame

Local
frame

Environment

mul:
...

x:

mul:
...

x:

Environments (Names):

Local
frame

Expressions (Program):

Return expression

Value They are evaluated in an
environment to yield a value

Not part of an environment

An environment is a sequence
of frames

Frames link to each other

An environment is a first frame,
plus the environment that follows

The global
frame

square(2)

Call expression

return mul(x, x)

square(square(3))

square(3)

mul:

square

x: 3

square:

square(x):

... mul(a,b):

square

x: 9

9

81

Every call to a user-
defined function creates

a new local frame

Both outlined sequences of frames are environments

 <header>:
 <statement>
 <statement>
 ...
 <separating header>:
 <statement>
 <statement>
 ...
 ...

Compound statement

Suite

Clause

Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.

1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then
return to step 1.

Execution rule for while statements:

mul:

square:

square(square):

return mul(square, square)

square(4)

mul(a,b):

square

square: 4

return mul(square, square)

def square(square):
 return mul(square, square)
from operator import mul
square(4)

16

Environments & Values
Expressions

Execution rule for def statements:

Execution rule for assignment statements:

Evaluation rule for call expressions:

Execution rule for conditional statements: hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 3) / (k * 4 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single
argument (not called term)

A formal parameter that
will be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 13 + 23 + 33 + 43 + 55

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Nested def statements: Functions defined within other
function bodies are bound to names in the local frame

Evaluation rule for or expressions:

Evaluation rule for and expressions:

Evaluation rule for not expressions:

Applying user-defined functions:

4

1.Evaluate the operator and operand subexpressions.
2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

1.Create a new local frame that extends the environment with
which the function is associated.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Associate that function with the current environment.
3.Bind the name of the function to the function value in the
first frame of the current environment.

1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values
in the first frame of the current environment.

1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.

CS 61A Midterm 1 Study Guide – Page 1

square

square(-2)

mul:

x: -2

square:

square(x):

return mul(x, x)

4

return mul(x, x)

... mul(a,b):

Environments
& Values

Expressions

from operator import mul
def square(x):
 return mul(x, x)
square(-2)

208
mul(add(2, mul(4, 6)), add(3, 5))

add(2, mul(4, 6))
26mul

add 2
mul(4, 6)

mul 4 6

24

add(3, 5)

add 3 5

8

-2
2

-2
None

abs(number):

print(...):

display “-2”

2, 10
1024

pow(x, y):

Pure Functions

Non-Pure Functions

square(-2)
4

return mul(x, x)

The environment
created for the
function body

The existing environment in which
the call expression is evaluated

A name evaluates
to the value
bound to that
name in the
earliest frame
of the current
environment in
which that name
is found.

Defining:

Call expression:

square(x):

return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

return mul(x, x)

Def
statement

Formal parameter

Body

Return
expression

(return statement)

operand: 2+2
argument: 4operator: square

function: square

Intrinsic name

4

16Argument

Return value

Frame

a:
b:

Name 2 Value

Binding

5

The global
frame

Local
frame

Environment

mul:
...

x:

mul:
...

x:

Environments (Names):

Local
frame

Expressions (Program):

Return expression

Value They are evaluated in an
environment to yield a value

Not part of an environment

An environment is a sequence
of frames

Frames link to each other

An environment is a first frame,
plus the environment that follows

The global
frame

square(2)

Call expression

return mul(x, x)

square(square(3))

square(3)

mul:

square

x: 3

square:

square(x):

... mul(a,b):

square

x: 9

9

81

Every call to a user-
defined function creates

a new local frame

Both outlined sequences of frames are environments

 <header>:
 <statement>
 <statement>
 ...
 <separating header>:
 <statement>
 <statement>
 ...
 ...

Compound statement

Suite

Clause

Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.

1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then
return to step 1.

Execution rule for while statements:

mul:

square:

square(square):

return mul(square, square)

square(4)

mul(a,b):

square

square: 4

return mul(square, square)

def square(square):
 return mul(square, square)
from operator import mul
square(4)

16

Environments & Values
Expressions

Execution rule for def statements:

Execution rule for assignment statements:

Evaluation rule for call expressions:

Execution rule for conditional statements: hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 3) / (k * 4 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single
argument (not called term)

A formal parameter that
will be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 13 + 23 + 33 + 43 + 55

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Nested def statements: Functions defined within other
function bodies are bound to names in the local frame

Evaluation rule for or expressions:

Evaluation rule for and expressions:

Evaluation rule for not expressions:

Applying user-defined functions:

4

1.Evaluate the operator and operand subexpressions.
2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

1.Create a new local frame that extends the environment with
which the function is associated.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Associate that function with the current environment.
3.Bind the name of the function to the function value in the
first frame of the current environment.

1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values
in the first frame of the current environment.

1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.

Tuesday, October 11, 2011

Designing Interpreters

All programming languages are not the same!

Common elements: User-defined functions & call expressions

Some features are often excluded: Higher-order functions,
object systems, while and for statements, assignment, etc.

Coming soon: The Logo language doesn't include any of these
features, but still lets us define short, powerful programs!

How can that be? Raw code is passed around like data.

Before we build interpreters:
• Recursive functions

• Recursive data structures

• Error handling

4

Tuesday, October 11, 2011

Recursive Functions

Definition: A function is called recursive if the body of that
function calls itself, either directly or indirectly.

Implication: Executing the body of a recursive function may
require applying that function again.

5

Drawing Hands, by M. C. Escher (lithograph, 1948)

Tuesday, October 11, 2011

Example: Pig Latin

Yes, you're in a college class and learning Pig Latin.

6

 def pig_latin(w):

 """Return the Pig Latin equivalent of English word w."""

 if starts_with_a_vowel(w):

 return w + 'ay'

 return pig_latin(w[1:] + w[0])

 def starts_with_a_vowel(w):

 """Return whether w begins with a vowel."""

 return w[0].lower() in 'aeiou'

Demo

Tuesday, October 11, 2011

pig_latin('pun')

pig_latin(w[1:] + w[0])
'unpay'

if starts_with_a_vowel(w):
 return w + 'ay'
return pig_latin(w[1:] + w[0])

Environments for Pig Latin

7

pig_latin:

starts_with_a_vowel:

pig_latin(w):
if starts_with_a_vowel(w):
 return w + 'ay'
return pig_latin(w[1:] + w[0])

starts_with_a_vowel(w):

return w[0].lower() in 'aeiou'

'unpay'

w: 'pun'w: 'unp'

if starts_with_a_vowel(w):
 return w + 'ay'
return pig_latin(w[1:] + w[0])

Tuesday, October 11, 2011

The Anatomy of a Recursive Function

• The def statement header is
similar to other functions

• Conditional statements check
for base cases
• Base cases are evaluated
without recursive calls
• Typically, all other cases are
evaluated with recursive calls

8

 def pig_latin(w):

 if starts_with_a_vowel(w):

 return w + 'ay'

 return pig_latin(w[1:] + w[0])

http://en.wikipedia.org/wiki/File:Scheme_ant_worker_anatomy-en.svg

Recursive functions are
like ants (more or less)

Tuesday, October 11, 2011

http://en.wikipedia.org/wiki/File:Scheme_ant_worker_anatomy-en.svg
http://en.wikipedia.org/wiki/File:Scheme_ant_worker_anatomy-en.svg

4! = 4 · 3 · 2 · 1 = 24

n! =
n�

i=1

i n! =

�
1 if n = 1

n · (n− 1) otherwise

Iteration vs Recursion

Iteration is a special case of recursion

9

 def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

 def fact(n):
 if n == 1:
 return 1
 return n * fact(n-1)

Using iterative control: Using recursion:

n, total, k

Math:

Names: n

Tuesday, October 11, 2011

fact(4)

fact(n-1)

fact(n-1)

fact(n-1)

if n == 1:
 return 1
return n * fact(n-1)

n: 3

if n == 1:
 return 1
return n * fact(n-1)

n: 4

Environments for Factorial

10

6

24

2

1

fact:

fact(n):
...

if n == 1:
 return 1
return n * fact(n-1)

n: 2

if n == 1:
 return 1
return n * fact(n-1)

n: 1

 def fact(n):
 if n == 1:
 return 1
 return n * fact(n-1)

 fact(4)

Tuesday, October 11, 2011

The Recursive Leap of Faith

Is fact implemented correctly?

1. Verify the base case.

2. Treat fact(n-1) as a functional
abstraction!

3. Assume that fact(n-1) is correct.

4. Verify that fact(n) is correct,
assuming that fact(n-1) correct.

11
Photo by Kevin Lee, Preikestolen, Norway

 def fact(n):
 if n == 1:
 return 1
 return n * fact(n-1)

Tuesday, October 11, 2011

Example: Reverse a String

def reverse(s):
 """Return the reverse of a string s."""

12

Recursive idea: The reverse of a string is the reverse
of the rest of the string, followed by the first letter.

Base Case: The reverse of an empty string is itself.

reverse(s[1:]) + s[0]

antidisestablishmentarianism

a ntidisestablishmentarianism

msinairatnemhsilbatsesiditn a

Tuesday, October 11, 2011

Converting Recursion to Iteration

Hard! Iteration is a special case of recursion

Idea: Figure out what state must be maintained by the function

13

def reverse(s):
 if s == '':
 return s
 return reverse(s[1:]) + s[0]

def reverse_iter(s):
 r, i = '', 0
 while i < len(s):
 r, i = s[i] + r, i + 1
 return r

What's reversed
so far?

How to get each
incremental piece

Tuesday, October 11, 2011

Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion

Idea: The state of an iteration can be passed as parameters

14

def reverse_iter(s):
 r, i = '', 0
 while i < len(s):
 r, i = s[i] + r, i + 1
 return r

def reverse2(s):
 def rev(s, r, i):
 if not i < len(s):
 return r
 return rev(s, s[i] + r, i + 1)
 return rev(s, '', 0)

Assignment becomes...

Arguments to a
recursive call

Tuesday, October 11, 2011

