
CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip
1

CS61A Notes – Week 5: Sequences [Solutions]

From the pig project, we have discovered the utility of having structures that contain multiple
values. Today, we are going to cover some ways we can model and create these structures, which
are called sequences.

A sequence is an ordered collection of data values. Unlike a pair, which has exactly two elements, a
sequence can have an arbitrary (but finite) number of ordered elements.

A sequence is not a particular abstract data type, but instead a collection of behaviors that different
types share. That is, there are many kinds of sequences, but they all share certain properties. In
particular:

1. Length: a sequence has a finite length.
2. Element selection: A sequence has an element corresponding to any non-negative integer

index less than its length, starting at 0 for the first element.

Nested pairs and “box and pointer” notation

We have seen pairs implemented using both tuples and functions. When you want to draw a pair
(or other sequencing structures) on paper, computer scientists often use “box and pointer”
diagrams. For example, the pair (1, 2) would be represented as the following box and pointer
diagram:

Box and pointer diagrams are useful, since they show the structure and elements of a pair or
sequence very clearly. The steps to construct such a diagram are as follows:

a. Represent a pair as two horizontally adjacent boxes.
b. Draw arrows from inside the boxes to the contents of the pair, which can also be pairs (or

any other value).
c. Draw a starting arrow to the first entry in your diagram. Note that the starting arrow in the

above diagram points to the entirety of the two boxes, and not just the first box.
d. Don’t forget your starting arrow! Your diagram will spontaneously burst into flames

without it.

The arrows are also called pointers, indicating that the content of a box “points” to some value.

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip
2

EXERCISES
1. Draw a box and pointer diagram for the following code:

 >>> x = make_pair(make_pair(42, 28), make_pair(2, 3))

2. Given the definition of x above, what will getitem_pair(getitem_pair(x, 1), 0)

return?
Answer: 2

Recursive Lists

Using nested pairs, we are going to create our own type of sequence, called a recursive list (or
rlist). Recursive lists are chains of pairs. Each pair will hold a value in our list (referred to as the
first element of the pair) and a pointer to the rest of the recursive list (another pair). Thus, we have
the following constructors and selectors:

 def make_rlist(first, rest):
 return (first, rest)

 def first(s):
 return s[0]

 def rest(s):
 return s[1]

However, we still need a way to represent the end of a recursive list. For this example, we will use
the Python constant, None. We can make the following definition as well:

 empty_rlist = None

Remember to use the name empty_rlist when working with recursive lists in order to respect the
abstraction, or John will set your paper on fire.

To formalize our definition, a recursive list is something that fits either of the following two
descriptions:

1. A pair whose first item can be anything, and whose rest item is itself a recursive list.
2. The Python value None, when used in the context of recursive lists.

Since we want recursive lists to be a sequence, we should be able to find the length of a recursive
list and be able to select any element from the recursive list. Functions to find such things are in
the lecture notes, but let’s try reimplementing them in the exercises below:
EXERCISES

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip
3

1. Draw the box and pointer diagram for this rlist:

 make_rlist(1,
 make_rlist(2,
 make_rlist(make_rlist(3, empty_rlist),
 make_rlist(4,
 make_rlist(5, empty_rlist)))))

2. Using calls to make_rlist, create the rlist that is printed as :

 (3, (2, (1, (‘Blastoff’, None))))
Answer:
make_rlist(3, make_rlist(2, make_rlist(1, make_rlist(‘Blastoff’, empty_rlist))))

3. Write the function len_rlist that takes an rlist and returns its length. (This is in the
lecture notes as well.)
Answer:
def len_rlist(rlist):
 length = 0
 while rlist != empty_rlist:
 rlist = rest(rlist)
 length = length + 1
 return length

4. Write the function last that takes an rlist and returns the last item in that rlist (assume the
function getitem_rlist is not yet defined).
Answer:
def last(rlist):
 length = len_rlist(rlist)
 while length > 1:
 rlist = rest(rlist)
 length = length - 1
 return first(rlist)

5. Write the function getitem_rlist that takes an rlist and an index and returns the element
at that index:

 >>> x = make_rlist(2, make_rlist(3, empty_rlist))
 >>> getitem_rlist(x, 1)
 3
Answer:
def getitem_rlist(rlist, i):
 while i > 0:
 rlist = rest(rlist)
 i = i – 1
 return first(rlist)

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip
4

Tuples

Tuples are another kind of sequence. You can make a tuple by enclosing a comma separated set of
elements inside parentheses. (The parentheses are optional at times, but it’s generally safe to
include them anyway).

 >>> (1, 2, 3)
 (1, 2, 3)

Since tuples are a type of sequence, that means we should have a way to get the length of the
sequence:

 >>> len((1, 2, 3))
 3

And we should have a way to pull elements out:

 >>> (1, 2, 3)[1]
 2

A note on constructing tuples: constructing a tuple with 2 or more elements is easy, and creating an
empty tuple is easy too (simply don’t include anything between your parentheses). However, you
may run into problems trying to create a tuple of one element:

 >>> (3)
 3

What happened? Well, Python sees these parentheses as grouping parentheses, like the ones you’d
use in a math expression, rather than parentheses that denote a tuple. We can tell Python to create
a one element tuple by adding an extra comma:

 >>> (3,)
 (3,)

 >>> (3,)[0]
 3

Also note that we’ve actually seen tuples before, you just didn’t know they were there! Take the
following function:

 >>> def foo(a, b):
 ... return a, b
 ...
 >>> tup = foo(1, 2)
 >>> tup
 (1, 2)

That’s right! Functions that return multiple values actually return tuples.

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip
5

EXERCISES
1. Write a function, sum, that takes a tuple and returns the sum of its elements. (Note: sum is

actually already built into Python!)

 >>> sum((1, 2, 3, 4, 5))
 15
def sum(tup):
 i = 0
 total = 0
 while i < len(tup):
 total = total + tup[i]
 return total

Sequence Iteration with For Loops

In a lot of our sequence questions so far, we’ve ended up with code that looks like this:

 i = 0
 while i < len(sequence):
 elem = sequence[i]
 # do something with elem
 i += 1

This particular construct happens to be incredibly useful because it gives us a way to look at each
element in a sequence. In fact, iterating through a sequence is so common that Python actually gives
us a special piece of syntax to do it, called the for loop:

 for elem in sequence:
 # do something with elem

Look at how much shorter that is! More generally, sequence can by any expression that evaluates to
a sequence, and elem is simply a variable name. On the first iteration through this loop, elem will
be bound to the first element in sequence in the current environment. On the second iteration, elem
will be bound to the first element in sequence in the current environment. On the second iteration,
elem gets rebound to the second element. This process repeats until elem has been bound to each
element in the sequence, at which point the for loop terminates.

EXERCISES

1. Implement sum one more time, this time using a for loop.
def sum(sequence):
 total = 0
 for val in sequence:
 total += val
 return total

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip
6

2. Now use a for loop to write a function, filter, that takes a predicate of one argument and a
sequence and returns a tuple. (A predicate is a function that returns True or False.) This
tuple should contain the same elements as the original sequence, but without the elements
that do not match the predicate (i.e. the predicate returns False when you call it on that
element).

 >>> filter(lambda x: x % 2 == 0, (1, 4, 2, 3, 6))
 (4, 2, 6)

def filter(pred, sequence):
 result = ()
 for elem in sequence:
 if pred(elem):
 result = result + (elem,)
 return result

3. It’s often useful to pair values in a sequence with names. If we do that, then instead of

having to remember the index of the value you are interested in, you only need to
remember the name associated with that value. (This has proven to be so useful that Python
actually has something like this built-in, called dictionaries, which you will learn about
later.)

We can implement this type of sequence, which we will call an association list, as a sequence
of 2-tuples. The first element (index 0) of the tuple will be the ‘key’ associated with the
value, and the second element (index 1) will be the ‘value’ itself. In this question, you will
define constructors and selectors for an association list ADT:

a. Write a constructor, make_alist, that takes a sequence of keys and a sequence of
corresponding values, and returns an association list (that is, a sequence of key-
value tuples).

 >>> make_alist((‘a’, ‘b’), (1, 2))
 ((‘a’, 1), (‘b’, 2))

def make_alist(keys, values):
 alist = ()
 for i in range(len(keys)):
 alist = alist + ((keys[i], values[i]),)
 return alist

b. Write a selector, lookup, that takes an alist and a key and returns the value that

corresponds to that key, or None if the key is not in the alist.
def lookup(alist, key_to_find):
 for key, value in alist:
 if key == key_to_find:
 return value
 return None

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip
7

c. Finally, write a procedure, change, that takes an alist, a key, and a value. It should
return a new alist that matches the original, but with the following difference:

i. If the key is already present in the original alist, replace its corresponding
value with the argument value

ii. Otherwise, add the key and value to the end of the alist.

def change(alist, key_to_change, new_value):
 new_alist = ()
 found_it = False
 for key, value in alist:
 if key == key_to_change:
 new_alist = new_alist + ((key, new_value),)
 found_it = True
 else:
 new_alist = new_alist + ((key, value),)
 if not found_it:
 new_alist = new_alist + ((key_to_change, new_value),)
 return new_alist

