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(1/0) Input/Output

Computers useless without 1/0
— Over time, literally thousands of forms of computer I/O:
punch cards to brain interfaces

Broad categories:

= Secondary/Tertiary storage (flash/disk/tape)

= Network (Ethernet, WiFi, Bluetooth, LTE)

= Human-machine interfaces (keyboard, mouse,
touchscreen, graphics, audio, video, neural,...)

= Printers (line, laser, inkjet, photo, 3D, ...)

= Sensors (process control, GPS, heartrate, ...)

= Actuators (valves, robots, car brakes, ...)

Mix of I/O devices is highly application-dependent
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Interfacing to 1/0O Devices

Two general strategies

= Memory-mapped
—1/0 devices appear as memory locations to processor
— Reads and writes to I/O device locations configure I/O and
transfer data (using either programmed /O or DMA)
= |/O channels
— Architecture specifies commands to execute I/O
commands over defined channels
—1/0 channel structure can be layered over memory-
mapped device structure

= |n addition to data transfer, have to define

synchronization method
— Polling: CPU checks status bits
— Interrupts: Device interrupts CPU on event
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Memory-Mapped 1/O

= Programmed 1/O uses CPU to control I/O device using
load and store instructions, with address specifying

device register to access
— Load and store can have side effect on device

= Usually, only privileged code can access |/O devices
directly, to provide secure multiprogramming

— System calls sometimes provided for application to open
and reserve a device for exclusive access

= Processors provide “uncached” loads and stores to

prevent caching of device registers
— Usually indicated by bits in page table entries or by
reserving portions of physical address space
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Simple 1/0O Bus Structure

CPU
[
Caches
Memory 1/0 Bus 1/O Bus
Bus Bridge

DRAM /0 /0 /0
Device Device Device
H1 H2 H#3

Some range of physical memory addresses map to I/0 bus devices
/0O bus bridge reduces loading on critical CPU-DRAM bus

Devices can be “slaves”, only responding to |/O bus requests
Devices can be “masters”, initiating I/O bus transfers
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DMA (Direct Memory Access)

CPU

|
Caches DMA

Memory 1/0 Bus 1/O Bus
Bus Bridge '
DMA
DRAM I/Q I/Q I/Q
Device Device Device
#H1 H2 H#3

= DMA engines offload CPU by autonomously transferring data

between 1/0O device and main memory. Interrupt/poll for done
— DMA programmed through memory-mapped registers
— Some systems use dedicated processors inside DMA engines
= Often, many separate DMA engines in modern systems
— Centralized in I/0 bridge (usually supporting multiple concurrent
channels to different devices), works on slave-only I/O busses
— Directly attached to each peripheral (if I/O bus supports mastering)
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More Complex Bus Structures

. CPU /0 /0
Graphics | Device | | Device
#1 H2
DMA Caches DMA VA
/0 Bus Fast 1/0 Bus
Memory Bridge —
Bus
Slow I/O Bus Slow I/O Bus
PRAM Bridge
/0 /0
Device Device
#3 #4

= Match speed of I/O connection to device demands
— Special direct connection for graphics
— Fast I/O bus for disk drives, ethernet

— Slow 1/0 bus for keyboard, mouse, touchscreen
— Reduces load on fast I/O bus + less bus logic needed on device
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Move from Parallel to Serial 1/0 Off-chip

CPUI/O

IF /0 1 /O 2

Shared Parallel Bus Wires Arbiter

Central Bus

e Parallel bus clock rate limited by clock skew across long bus (~100MHz)
e High power to drive large number of loaded bus lines

e Central bus arbiter adds latency to each transaction, sharing limits throughput

* Expensive parallel connectors and backplanes/cables (all devices pay costs)

e Examples: VMEbus, Sbus, ISA bus, PCI, SCSI, IDE

Dedicated Point-to-point Serial Links
 Point-to-point links run at multi-gigabit speed using advanced clock/signal

encoding (requires lots of circuitry at each end)

» Lower power since only one well-behaved load CPU I/0

e Multiple simultaneous transfers

IF

e

/0 1

e Cheap cables and connectors (trade greater endpoint transistor cost for lower
physical wiring cost), customize bandwidth per device using multiple links in parallel

e Examples: Ethernet, Infiniband, PCI Express, SATA, USB, Firewire, etc.

CS252, Fall 2015, Lecture 18 © Krste Asanovic, 2015

N\

/0 2




Move from Bus to Crossbar On-Chip

= Busses evolved in era where wires were expensive
and had to be shared

= Bus tristate drivers problematic in standard cell flows,
so replace with combinational muxes

= Crossbar exploits density of on-chip wiring, allows
multiple simultaneous transactions

Tristated Bus AL A
¥ N R -
A B C = —

c HAH c

Crossbar
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/O and Memory Mapping

= |/O busses can be coherent or not
— Non-coherent simpler, but might require flushing caches or
only non-cacheable accesses (much slower on modern
processors)
— Some 1/0 systems can cache coherently also (SGI Origin)
= |/O can use virtual addresses
— Simplifies DMA into user address space, otherwise
contiguous user segment needs scatter/gather by DMA
engine
— Provides protection from bad device drivers
— Adds complexity to I/O device
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Interrupts versus Polling

Two ways to detect I/O device status:

= [nterrupts
+No CPU overhead until event
—Large context-switch overhead on each event (trap flushes
pipeline, disturbs current working set in cache/TLB)
—Can happen at awkward time
= Polling
— CPU overhead on every poll
— Difficult to insert in all code
+Can control when handler occurs, reduce working set hit

* Hybrid approach:

— Interrupt on first event, keep polling in kernel until sure no
more events, then back to interrupts
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Example ARM SoC Structure

Range of Topologies:
big LITTLE
* Dual A15 + Quad A7
* Dual A15 + Dual A7

(Optional) Real-time
traffic on a separate
NIC AXI4 bus into
DMC

TZC provides secure
and protected regions
of Memory

DRAM
12-17GB/s
eqg.

2 *x32 LPDDR3
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MU enables a common
memory view for all SoC

components

CCI-400 provides
hardware coherency
to simplify software
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ARM Sample Smartphone Diagram
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Intel lvy Bridge Server Chip I/0
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Intel Romley Server Platform

Xeon ES5 CPUs Memory
Up to 8 cores / socket DDR3,DDR3L
2 i c
2 QPI links RDIMM, UDIMM
LRDIMM
- -800 to -1600
« Up to 3 DPC

» 4 chan/socket

Xeon E5-2600 Xeon E5-2600

Manageability

Node Manager

Data Center
Manager

Csé)g_Serites PCI Express* 3.0
ipse ]
40 lanes per socket
€600 (Patsbura) Extra x4 Genpi' on 2" CPU
Optimized Server PCH ettt R ok

Integrated Storage:

Up to 8 ports 3Gb/s SAS
SAS RAID 5 optional [O©lntel]
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