CS252 Graduate Computer Architecture
Fall 2015
Lecture 18:1/0

Krste Asanovic
krste@eecs.berkeley.edu
http://inst.eecs.berkeley.edu/~cs252/falb

CS252, Fall 2015, Lecture 18 © Krste Asanovic, 2015

(1/0) Input/Output

Computers useless without 1/0
— Over time, literally thousands of forms of computer I/O:
punch cards to brain interfaces

Broad categories:

= Secondary/Tertiary storage (flash/disk/tape)

= Network (Ethernet, WiFi, Bluetooth, LTE)

= Human-machine interfaces (keyboard, mouse,
touchscreen, graphics, audio, video, neural,...)

= Printers (line, laser, inkjet, photo, 3D, ...)

= Sensors (process control, GPS, heartrate, ...)

= Actuators (valves, robots, car brakes, ...)

Mix of I/O devices is highly application-dependent

CS252, Fall 2015, Lecture 18 © Krste Asanovic, 2015

Interfacing to 1/0O Devices

Two general strategies

= Memory-mapped
—1/0 devices appear as memory locations to processor
— Reads and writes to I/O device locations configure I/O and
transfer data (using either programmed /O or DMA)
= |/O channels
— Architecture specifies commands to execute I/O
commands over defined channels
—1/0 channel structure can be layered over memory-
mapped device structure

= |n addition to data transfer, have to define

synchronization method
— Polling: CPU checks status bits
— Interrupts: Device interrupts CPU on event

CS252, Fall 2015, Lecture 18 © Krste Asanovic, 2015

Memory-Mapped 1/O

= Programmed 1/O uses CPU to control I/O device using
load and store instructions, with address specifying

device register to access
— Load and store can have side effect on device

= Usually, only privileged code can access |/O devices
directly, to provide secure multiprogramming

— System calls sometimes provided for application to open
and reserve a device for exclusive access

= Processors provide “uncached” loads and stores to

prevent caching of device registers
— Usually indicated by bits in page table entries or by
reserving portions of physical address space

CS252, Fall 2015, Lecture 18 © Krste Asanovic, 2015

Simple 1/0O Bus Structure

CPU
[
Caches
Memory 1/0 Bus 1/O Bus
Bus Bridge

DRAM /0 /0 /0
Device Device Device
H1 H2 H#3

Some range of physical memory addresses map to I/0 bus devices
/0O bus bridge reduces loading on critical CPU-DRAM bus

Devices can be “slaves”, only responding to |/O bus requests
Devices can be “masters”, initiating I/O bus transfers

CS252, Fall 2015, Lecture 18 © Krste Asanovic, 2015

DMA (Direct Memory Access)

CPU

|
Caches DMA

Memory 1/0 Bus 1/O Bus
Bus Bridge '
DMA
DRAM I/Q I/Q I/Q
Device Device Device
#H1 H2 H#3

= DMA engines offload CPU by autonomously transferring data

between 1/0O device and main memory. Interrupt/poll for done
— DMA programmed through memory-mapped registers
— Some systems use dedicated processors inside DMA engines
= Often, many separate DMA engines in modern systems
— Centralized in I/0 bridge (usually supporting multiple concurrent
channels to different devices), works on slave-only I/O busses
— Directly attached to each peripheral (if I/O bus supports mastering)

CS252, Fall 2015, Lecture 18 © Krste Asanovic, 2015

More Complex Bus Structures

. CPU /0 /0
Graphics | Device | | Device
#1 H2
DMA Caches DMA VA
/0 Bus Fast 1/0 Bus
Memory Bridge —
Bus
Slow I/O Bus Slow I/O Bus
PRAM Bridge
/0 /0
Device Device
#3 #4

= Match speed of I/O connection to device demands
— Special direct connection for graphics
— Fast I/O bus for disk drives, ethernet

— Slow 1/0 bus for keyboard, mouse, touchscreen
— Reduces load on fast I/O bus + less bus logic needed on device

CS252, Fall 2015, Lecture 18 © Krste Asanovic, 2015

Move from Parallel to Serial 1/0 Off-chip

CPUI/O

IF /0 1 /O 2

Shared Parallel Bus Wires Arbiter

Central Bus

e Parallel bus clock rate limited by clock skew across long bus (~100MHz)
e High power to drive large number of loaded bus lines

e Central bus arbiter adds latency to each transaction, sharing limits throughput

* Expensive parallel connectors and backplanes/cables (all devices pay costs)

e Examples: VMEbus, Sbus, ISA bus, PCI, SCSI, IDE

Dedicated Point-to-point Serial Links
 Point-to-point links run at multi-gigabit speed using advanced clock/signal

encoding (requires lots of circuitry at each end)

» Lower power since only one well-behaved load CPU I/0

e Multiple simultaneous transfers

IF

e

/0 1

e Cheap cables and connectors (trade greater endpoint transistor cost for lower
physical wiring cost), customize bandwidth per device using multiple links in parallel

e Examples: Ethernet, Infiniband, PCI Express, SATA, USB, Firewire, etc.

CS252, Fall 2015, Lecture 18 © Krste Asanovic, 2015

N\

/0 2

Move from Bus to Crossbar On-Chip

= Busses evolved in era where wires were expensive
and had to be shared

= Bus tristate drivers problematic in standard cell flows,
so replace with combinational muxes

= Crossbar exploits density of on-chip wiring, allows
multiple simultaneous transactions

Tristated Bus AL A
¥ N R -
A B C = —

c HAH c

Crossbar

CS252, Fall 2015, Lecture 18 © Krste Asanovic, 2015

/O and Memory Mapping

= |/O busses can be coherent or not
— Non-coherent simpler, but might require flushing caches or
only non-cacheable accesses (much slower on modern
processors)
— Some 1/0 systems can cache coherently also (SGI Origin)
= |/O can use virtual addresses
— Simplifies DMA into user address space, otherwise
contiguous user segment needs scatter/gather by DMA
engine
— Provides protection from bad device drivers
— Adds complexity to I/O device

CS252, Fall 2015, Lecture 18 © Krste Asanovic, 2015 1 0

Interrupts versus Polling

Two ways to detect I/O device status:

= [nterrupts
+No CPU overhead until event
—Large context-switch overhead on each event (trap flushes
pipeline, disturbs current working set in cache/TLB)
—Can happen at awkward time
= Polling
— CPU overhead on every poll
— Difficult to insert in all code
+Can control when handler occurs, reduce working set hit

* Hybrid approach:

— Interrupt on first event, keep polling in kernel until sure no
more events, then back to interrupts

CS252, Fall 2015, Lecture 18 © Krste Asanovic, 2015 1 1

Example ARM SoC Structure

Range of Topologies:
big LITTLE
* Dual A15 + Quad A7
* Dual A15 + Dual A7

(Optional) Real-time
traffic on a separate
NIC AXI4 bus into
DMC

TZC provides secure
and protected regions
of Memory

DRAM
12-17GB/s
eqg.

2 *x32 LPDDR3

CS252, Fall 2015, Lecture 18

CoreSight debug &
trace IP for flexible
profiling and
optimization of
complex systems

I/O coherent masters
that share data with
the CPU
e.g. 2D accelerator or
security / encryption
module

DDR3/2
LPDDR2/3

[©ARM]

Other
Slaves

Other
Slaves

Non
Coherent C Trace Bus) P'U
devices Qq—;swo (ITAG
4 N
{6} 110
g::;‘sg Coherent Coherent
devices devices
i k ACELile)
Video Displa ADE-400
(e) (o) | omie L) (22
| | TRE TACE
(MMU-500 j (ADB-MX)) (ADMOD J (MMU-500 j
T
A4 2314 ACE ACE ACE-Lite + DVM ACELite + DVM ACE-Lte +DVM
NIC-400
AXA CoreLink™ CCI-400r1
ACEAite ACELite ACELte
(T2C-400)
| | |
ACE-Lie ACELile ACELile ACE-Lita
(DMC-400 { 3" Party DMC \ NIC400
_ FRY) Confwm AXWA)CG'N-BMPB

(2

DDR3/2
LPDDR2/3

© Krste Asanovic, 2015

MU enables a common
memory view for all SoC

components

CCI-400 provides
hardware coherency
to simplify software

12

ARM Sample Smartphone Diagram
teof|

[MIPI HOM!

Screen

[OARM]

CS252, Fall 2015, Lecture 18 © Krste Asanovic, 2015 1 3

Intel lvy Bridge Server Chip I/0

2 o
E || €] €[] om hAAA
QPI Agent B e p ‘4 QPI Agent
2420,96GTis 1OAPIC no [DwA]| UBox PCU 220,96 GTs
Core LLC LLC Core LLC Core
>25 GHz 53 CacheBo | SnB 2sup | (FHRese 5‘ »%2.5 GHz 2smn | Cehele 53 >=25 GHz
B
C 2 LLC LLC Core Lee Core
sacan | 3% Cachalo: | Saiie 25mp | CcheBe 51 >‘5am 25m | CcheBe &3 >=25 GHz
NN A\
LLC CacheBo Core LLC CacheBo Core
i?;u §8 N z‘:sl'fg 25m8 53 3225 GHz 25M8 53 >225 GHz
N N\
N
Core g CacheBo LLC LLC Core LLC Core
>25GH | 89 25M8 25u | Cche8e 53 >=2.5 GHz 25Ms | Cichedo §8 >=2.5 GHz
N\, = N
Core LLC LLe Core LLC CacheBo Core
»+25GHz 53 faehaite 25m8 25um | CheBe 51 >s,5em 25M8 5‘ >=25GHz
—~ AN
H Home
Agent Agent
DDR3 / SMI2
s ©Intel s
b [I n t e] dch, w:gnaoo.
DORS / 8ch

CS252, Fall 2015, Lecture 18 © Krste Asanovic, 2015

Intel Romley Server Platform

Xeon ES5 CPUs Memory
Up to 8 cores / socket DDR3,DDR3L
2 i c
2 QPI links RDIMM, UDIMM
LRDIMM
- -800 to -1600
« Up to 3 DPC

» 4 chan/socket

Xeon E5-2600 Xeon E5-2600

Manageability

Node Manager

Data Center
Manager

Csé)g_Serites PCI Express* 3.0
ipse]
40 lanes per socket
€600 (Patsbura) Extra x4 Genpi' on 2" CPU
Optimized Server PCH ettt R ok

Integrated Storage:

Up to 8 ports 3Gb/s SAS
SAS RAID 5 optional [O©lntel]

CS252, Fall 2015, Lecture 18 © Krste Asanovic, 2015 1 5

Acknowledgements

= This course is partly inspired by previous MIT 6.823
and Berkeley CS252 computer architecture courses

created by my collaborators and colleagues:
— Arvind (MIT)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)

CS252, Fall 2015, Lecture 18 © Krste Asanovic, 2015

16

