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Address Translation in CPU Pipeline

Inst | | Inst. | Data | | Data
"I 1L [ cache [1P[ Decode ME _> M TLB []cache [IV[”
A T A A A T A
TLB miss? Page Fault? TLB miss? Page Fault?
Protection violation? Protection violation?

= Need to cope with additional latency of TLB:
— slow down the clock?
— pipeline the TLB and cache access?
— virtual address caches
— parallel TLB/cache access
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Virtual-Address Caches
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Alternative: place the cache before the TLB
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one-step process in case of a hit (+)
cache needs to be flushed on a context switch unless address space
identifiers (ASIDs) included in tags (-)
aliasing problems due to the sharing of pages (-)
maintaining cache coherence (-)
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Virtually Addressed Cache
(Virtual Index/Virtual Tag)
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Aliasing in Virtual-Address Caches

Page Table Tag Data
VA,—
Data Pages VA, 1st Copv of Data at PA
PA VA, 2nd Copv of Data at PA
VA,—
Virtual cache can have two copies of

Two virtual pages share  same physical data. Writes to one
one physical page copy not visible to reads of other!

General Solution: Prevent aliases coexisting in cache

Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this ensures
all VAs accessing same PA will conflict in direct-mapped cache
(early SPARCs)
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Concurrent Access to TLB & Cache
(Virtual Index/Physical Tag)

— Virtual
VA VPN L b Index
| \ 7 |
Direct-map Cache
TLB J[ k 2 blocks
| b,
PA PPN Page Offset 2>-byte block
< 7 \
Tag ;/?:
h?l'/Physma Tag Data

Index L is available without consulting the TLB
=> cache and TLB accesses can begin simultaneously!
Tag comparison is made after both accesses are completed

Cases:L+b=k L+b<k L+b>k
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Virtual-Index Physical-Tag Caches:

Associative Organization

VA VPN L = k-b
TLB + Kk
| |
PA PPN Page Offset
l
Tag

Virtual
. ?a. Index
Direct-map Direct-map
2t blocks 2 blocks
Phy.
Tag
l Data

After the PPN is known, 2° physical tags are compared

How does this scheme scale to larger caches?
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Concurrent Access to TLB & Large L1
The problem with L1 > Page size

Virtual Index

/ ' \ L1 PA cache
VA VPN a Page Offset | b Direct-map
v
—_ VA, [PPN;| Data
l VA, |PPN_| Data
PA PPN Page Offset | b
N /
| > — hit?
Tag

Can VA, and VA, both map to PA ?
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A solution via Second Level Cache

Memory

Memor
CPU !

Memory
RF Memory

Usually a common L2 cache backs up both Instruction
and Data L1 caches

L2 is “inclusive” of both Instruction and Data caches
* Inclusive means L2 has copy of any line in either L1
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Anti-Aliasing Using L2 [mirs R10000,1996]

Virtual Index
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— into L2 tag
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Tag

L1 PA cache

| Direct-map

VA, PPN Data
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= Suppose VA1 and VA2 both map to PA and
VAl is already in L1, L2 (VA1 = VA2)

= After VA2 is resolved to PA, a collision will be

detected in L2.

= VA1 will be purged from L1 and L2, and VA2

will be loaded = no aliasing !
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Anti-Aliasing using L2 for a Virtually

Addressed L1

— > Virtual
VA VPN Page Offset _|b Index & Tag
VA, | Data
TLB
l VA, | Data
PA PPN Page Offset L1 VA Cache
N /
Tag Physical i l Virtual Tag
Index & Tag

Physically-addressed L2 can also be

used to avoid aliases in virtually-

addressed L1
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Atlas Revisited

= One PAR for each physical page

= PAR’s contain the VPN’s of the pages
resident in primary memory

= Advantage: The size is proportional
to the size of the primary memory

= What is the disadvantage ?
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Hashed Page Table:
Approximating Associative Addressing

VPN d Virtual Address

l Page Table
PID Offset |, PA of PTE
hash +J

| Base of Table

= Hashed Page Table is typically 2 to 3 times larger
than the number of PPN’s to reduce collision
probability

= |t can also contain DPN’s for some non-resident
pages (not common)

= |f a translation cannot be resolved in this table then Primary
the software consults a data structure that has an Memory

.

entry for every existing page (e.g., full page table)
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Power PC: Hashed Page Table

QLE[N d 80-bit VA

Offset PA of Slot
hash - ’@

Base of Table

= Each hash table slot has 8 PTE's <VPN,PPN> that
are searched sequentially

= |f the first hash slot fails, an alternate hash
function is used to look in another slot

All these steps are done in hardware!

= Hashed Table is typically 2 to 3 times larger than
the number of physical pages

= The full backup Page Table is managed in software
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VM features track historical uses:

Bare machine, only physical addresses
— One program owned entire machine

Batch-style multiprogramming
— Several programs sharing CPU while waiting for 1/0

— Base & bound: translation and protection between programs (supports
swapping entire programs but not demand-paged virtual memory)
— Problem with external fragmentation (holes in memory), needed occasional
memory defragmentation as new jobs arrived
Time sharing
— More interactive programs, waiting for user. Also, more jobs/second.

— Motivated move to fixed-size page translation and protection, no external
fragmentation (but now internal fragmentation, wasted bytes in page)

— Motivated adoption of virtual memory to allow more jobs to share limited

physical memory resources while holding working set in memory
Virtual Machine Monitors

— Run multiple operating systems on one machine

— ldea from 1970s IBM mainframes, now common on laptops
- e.g., run Windows on top of Mac OS X

— Hardware support for two levels of translation/protection
— Guest OS virtual -> Guest OS physical -> Host machine physical
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Virtual Memory Use Today - 1

= Servers/desktops/laptops/smartphones have full

demand-paged virtual memory
— Portability between machines with different memory sizes
— Protection between multiple users or multiple tasks
— Share small physical memory among active tasks
— Simplifies implementation of some OS features

= \Vector supercomputers have translation and

protection but rarely complete demand-paging
= (Older Crays: base&bound, Japanese & Cray X1/X2: pages)
— Don’t waste expensive CPU time thrashing to disk (make
jobs fit in memory)
— Mostly run in batch mode (run set of jobs that fits in
memory)
— Difficult to implement restartable vector instructions
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Virtual Memory Use Today - 2

* Most embedded processors and DSPs provide

physical addressing only

— Can’t afford area/speed/power budget for virtual memory
support

— Often there is no secondary storage to swap to!

— Programs custom written for particular memory
configuration in product

— Difficult to implement restartable instructions for exposed
architectures
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