CS252 Graduate Computer Architecture

Fall 2015
Lecture 14: Synchronization and
Memory Models

Krste Asanovic
krste@eecs.berkeley.edu
http://inst.eecs.berkeley.edu/~cs252/falb

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015

Synchronization

The need for synchronization arises
whenever there are concurrent processes
in a system (even in a uniprocessor
system).

Two classes of synchronization:
= Producer-Consumer: A consumer

process must wait until the producer
process has produced data

= Mutual Exclusion: Ensure that only one
process uses a resource at a given time

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015

!

producer

~.

consumer

!

P1 P2

Shared
Resource

Simple Producer-Consumer Example

xflagp . xflagp
$
Producer flag Consumer
—> data |[&~—
xdatap xdatap
Memory
Initially £1ag=0
sd xdata, (xdatap) spin: 1ld xflag, (xflagp)
li xflag, 1 beqz xflag, spin
sd xflag, (xflagp) 1d xdata, (xdatap)

Is this correct?

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015

Memory Model

= Sequential ISA only specifies that each processor sees
its own memory operations in program order

= Memory model describes what values can be
returned by load instructions across multiple threads

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015

Simple Producer-Consumer Example

.| flag S
Producer data Consumer
Initially £1ag=0
sd xdata, (xdatap) spin: 1ld xflag, (xflagp)
li xflag, 1 beqz xflag, spin
sd xflag, (xflagp) 1d xdata, (xdatap)

Can consumer read flag=1 before
data written by producer?

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015

Sequential Consistency
A Memory Model

M

“ A system is sequentially consistent if the result of any
execution is the same as if the operations of all the
processors were executed in some sequential order, and
the operations of each individual processor appear in the
order specified by the program”

Leslie Lamport

Sequential Consistency = arbitrary order-preserving
interleaving of memory references of sequential programs

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015

Simple Producer-Consumer Example

flag
>
Producer data
Initially flag =0
sd xdata, (xdatap) spin: 1ld xflag, (xflagp)
éli xflag, 1 <beqz xflag, spin
sd xflag, (xflagp) 1d xdata, (xdatap)

< Dependencies from sequential ISA

< Dependencies added by sequentially
consistent memory model

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015

Implementing SC in hardware

= Only a few commercial systems implemented SC
— Neither x86 nor ARM are SC

= Requires either severe performance penalty
— Wait for stores to complete before issuing new store

= Or, complex hardware
— Speculatively issue loads but squash if memory

inconsistency with later-issued store discovered (MIPS
R10K)

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015

Software reorders too!

//Producer code //Consumer code
*datap = x/y; while (!'*flagp)
*flagp = 1; ;

d = *datap;

= Compiler can reorder/remove memory operations

unless made aware of memory model
— Instruction scheduling, move loads before stores if to
different address
— Register allocation, cache load value in register, don’t
check memory

* Prohibiting these optimizations would result in very
poor performance

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015

Relaxed Memory Models

= Not all dependencies assumed by SC are supported,
and software has to explicitly insert additional
dependencies were needed

= Which dependencies are dropped depends on the

particular memory model
- 1BM370, TSO, PSO, WO, PC, Alpha, RMO, ...
= How to introduce needed dependencies varies by

system

— Explicit FENCE instructions (sometimes called sync or
memory barrier instructions)
— Implicit effects of atomic memory instructions

How on earth are programmers supposed to work with
this????

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015 1 o

Fences in Producer-Consumer Example

flag
>
Producer data
Initially flag =0
sd xdata, (xdatap) spin: 1ld xflag, (xflagp)
li xflag, 1 beqz xflag, spin
fence.w.w //Write-write fence fence.r.r //Read-read fence

sd xflag, (xflagp) 1d xdata, (xdatap)

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015 1 1

Simple Mutual-Exclusion Example

Thread 1
xdatap

—> data [—

Memory

// Both threads execute:
1d xdata, (xdatap)

add xdata, 1

sd xdata, (xdatap)

Is this correct?

12

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015

Mutual Exclusion Using Load/Store

A protocol based on two shared variables c1 and c2.
Initially, both c1 and c2 are 0 (not busy)

Process 1
cl=1,;
L: ifc2=1 then go to L

< critical section>
cl=0;

What is wrong?

CS252, Fall 2015, Lecture 14

Process 2
c2=1;
L: ifcl=1 then go to L

< critical section>
c2=0;

Deadlock!

© Krste Asanovic, 2015

13

Mutual Exclusion: second attempt

To avoid deadlock, let a process give up the reservation
(i.e. Process 1 sets c1 to 0) while waiting.

Process 1 Process 2
L: cl1=1; L: c2=1;
if c2=1 then if c1=1 then
{ c1=0; go to L} { c2=0; go to L}
< critical section> < critical section>
cl=0 c2=0

e Deadlock is not possible but with a low probability
a livelock may occur.

e An unlucky process may never get to enter the
critical section = starvation

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015

14

CS252, Fall 2015, Lecture 14

A Protocol for Mutual Exclusion
T. Dekker, 1966

A protocol based on 3 shared variables c1, c2 and turn.
Initially, both c1 and c2 are 0 (not busy)

Process 1 Process 2
cl=1; c2=1;
turn = 1; turn = 2;
L: if c2=1 & turn=1 L: ifcl=1 & turn=2
then go to L then go to L
< critical section> < critical section>
cl1=0; c2=0;

e turn = j ensures that only process j can wait
e variables cl and c2 ensure mutual exclusion
Solution for n processes was given by Dijkstra

and is quite tricky!

© Krste Asanovic, 2015

15

Scenario 1

Scenario 2

CS252, Fall 2015, Lecture 14

Analysis of Dekker’s Algorithm

Process 1
cl=1;
turn = 1;
L:ifc2=1 & turn=1
then go to L

< critical section>
cl=0;

Process 2
c2=1,
turn = 2;
L: ifcl=1 & turn=2
then go to L

< critical section>
c2=0;

Process 1
cl=1;
turn = 1;
L:ifc2=1 & turn=1
then go to L

< critical section>
cl1=0;

Process 2
c2=1;
turn = 2;
L: ifcl=1 & turn=2
then go to L

< critical section>
c2=0;

© Krste Asanovic, 2015

16

ISA Support for Mutual-Exclusion Locks

= Regular loads and stores in SC model (plus fences in
weaker model) sufficient to implement mutual
exclusion, but inefficient and complex code

= Therefore, atomic read-modify-write (RMW)
instructions added to ISAs to support mutual
exclusion

= Many forms of atomic RMW instruction possible,

some simple examples:
— Test and set (reg_x = MJ[a]; M[a]=1)
— Swap (reg_x=MJa]; M[a] = reg_y)

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015

17

Lock for Mutual-Exclusion Example

xlockp
Thread 1
xdatap

v

lock [|
—> data [—

Memory

// Both threads execute:
li xone, 1

spin: | amoswap xlock, xone, (xlockp)

bnez xlock, spin Acquire Lock

1d xdata, (xdatap)

add xdata, 1 Critical Section
sd xdata, (xdatap)
sd x0, (xlockp) Release Lock

Assumes SC memory model

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015

Lock for Mutual-Exclusion with Relaxed MM

xlockp
Thread 1
xdatap

v

lock [|
—> data [—

Memory

// Both threads execute:
li xone, 1

spin: amoswap xlock, xone, (xlockp)
bnez xlock, spin
fence.r.r

Acquire Lock

1d xdata, (xdatap)
add xdata, 1
sd xdata, (xdatap)

Critical Section

fence.w.w
sd x0, (xlockp)

Release Lock

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015

19

Release Consistency

= Observation that consistency only matters when
processes communicate data

= Only need to have consistent view when one process
shares its updates to other processes

= Other processes only need to ensure they receive
updates after they acquire access to shared data

P1 P2
N Acquire
Ensgre critical o Other
s.ec?tlon updates < Critica Code
visible before el
release visible €ease o Ensure acquire
cquire happened before
Other . . .
Critical critical section
Code
Release reads data

20

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015

Release Consistency Adopted

= Memory model for C/C++ and Java uses release
consistency

* Programmer has to identify synchronization
operations, and if all data accesses are protected by
synchronization, appears like SC to programmer

= ARM v8.1 and RISC-V ISA adopt release consistency
semantics on AMOs

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015

21

Nonblocking Synchronization

Compare&Swap(m), R, R.:

if (Re==M[m])
then M[m]=R;
R.=R;;

status < success;
else status < fail;

try: Load R;..4, (head)
spin: Load R, (tail)

|f Rhead==RtaiI gOtO Spln

Load R, (Rpeaq)
Rnewhead = Rhead+1

status is an
implicit
argument

Compare&Swap(head), Ryeadr Rhewhead

if (status==fail) goto try

process(R)

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015

22

Load-reserve & Store-conditional

Special register(s) to hold reservation flag and address,
and the outcome of store-conditional

Load-reserve R, (m): Store-conditional (m), R:
<flag, adr> < <1, m>; if <flag, adr> == <1, m>
R < M[m]; then cancel other procs’

try:
spin:

CS252, Fall 2015, Lecture 14

reservation on m;

M[m] < R;

status < succeed;
else status < fail;

Load-reserve R, .4, (head)
Load R, (tail)

if Rhead==RtaiI gOtO Spin

Load R, (Rpeaq)

Rhead = Rhead +1
Store-conditional (head), Ry..q
if (status==fail) goto try
process(R)

© Krste Asanovic, 2015

23

Acknowledgements

= This course is partly inspired by previous MIT 6.823
and Berkeley CS252 computer architecture courses

created by my collaborators and colleagues:
— Arvind (MIT)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)

CS252, Fall 2015, Lecture 14 © Krste Asanovic, 2015

24

