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Last Time in Lecture 12

Synchronization and Memory Models

= Producer-Consumer versus Mutual Exclusion
= Sequential Consistency

= Relaxed Memory models
= Fences

= Atomic memory operations
= Non-Blocking Synchronization
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Multithreading

= Difficult to continue to extract instruction-level
parallelism (ILP) from a single sequential thread of
control

= Many workloads can make use of thread-level
parallelism (TLP)

— TLP from multiprogramming (run independent sequential
jobs)

— TLP from multithreaded applications (run one job faster
using parallel threads)

= Multithreading uses TLP to improve utilization of a
single processor
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Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

One way is to interleave execution of instructions from
different program threads on same pipeline

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Tl1:LD x1,0(x2) | FIDIXIM WE_= Prior instruction in a
T2:ADD x7,x1,x4: |F|D|X e i i ithread always
T3:XORT x5.x4 .1 2 FID i completes write-back

: G i before next instruction
T4:5D 0(x7) ,x5 : _ F i in same thread reads
T1:LD x5,12(x1) : register file
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CDC 6600 Peripheral Processors
(Cray, 1964)

»
» First multithreaded hardware

= 10 “virtual” I/O processors

= Fixed interleave on simple pipeline

= Pipeline has 100ns cycle time

= Each virtual processor executes one instruction every 1000ns
= Accumulator-based instruction set to reduce processor state
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Simple Multithreaded Pipeline
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select

= Have to carry thread select down pipeline to ensure correct state bits read/

written at each pipe stage
= Appears to software (including OS) as multiple, albeit slower, CPUs
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Multithreading Costs

= Each thread requires its own user state
- PC
— GPRs

= Also, needs its own system state

— Virtual-memory page-table-base register
— Exception-handling registers

= Other overheads:
— Additional cache/TLB conflicts from competing threads
— (or add larger cache/TLB capacity)
— More OS overhead to schedule more threads (where do all these
threads come from?)
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Thread Scheduling Policies

= Fixed interleave (coc 6600 Ppus, 1964)

— Each of N threads executes one instruction every N cycles
— If thread not ready to go in its slot, insert pipeline bubble

= Software-controlled interleave (11 asc ppus, 1971)
— OS allocates S pipeline slots amongst N threads
— Hardware performs fixed interleave over S slots, executing

whichever thread is in that slot

» Hardware-controlled thread schedu

INg (HEP, 1982)

— Hardware keeps track of which threads are ready to go
— Picks next thread to execute based on hardware priority

scheme
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Denelcor HEP

(Burton Smith, 1982)

First commercial machine to use hardware threading in main CPU
— 120 threads per processor
— 10 MHz clock rate
— Up to 8 processors
— precursor to Tera MTA (Multithreaded Architecture)
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Tera MTA (1990-)

Up to 256 processors

Up to 128 active threads per processor
Processors and memory modules populate a
sparse 3D torus interconnection fabric

Flat, shared main memory
— No data cache
— Sustains one main memory access per cycle per
processor

GaAs logic in prototype, 1KW/processor @

260MHz
— Second version CMOS, MTA-2, 50W/processor
— Newer version, XMT, fits into AMD Opteron socket,
runs at 500MHz
— Newest version, XMT2, has higher memory
bandwidth and capacity

11
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MTA Pipeline

[ Issue Pool ] Inst Fetch

> e Every cycle, one VLIW
(W / l \ instruction from one active thread
A C is launched into pipeline
N e Instruction pipeline is 21 cycles
s (5] long
§ S W
[ g' e Memory operations incur ~150
E g R'a cycles of latency
- "2
[ Retry Pool ]
Assuming a single thread issues one
instruction every 21 cycles, and clock rate
[ Interconnection Network ] is 260 MHz...
Memory pipeline What is single-thread performance?

Effective single-thread issue rate is
260/21 =12.4 MIPS

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015 1 2



Coarse-Grain Multithreading

= Tera MTA designed for supercomputing applications

with large data sets and low locality
— No data cache
— Many parallel threads needed to hide large memory latency

= Other applications are more cache friendly
— Few pipeline bubbles if cache mostly has hits
— Just add a few threads to hide occasional cache miss
latencies
— Swap threads on cache misses
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MIT Alewife (1990)

= Modified SPARC chips

— register windows hold different
thread contexts

= Up to four threads per node
= Thread switch on local cache
miss

© Krste Asanovic, 2015
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IBM PowerPC RS64-1V (2000)

= Commercial coarse-grain multithreading CPU

= Based on PowerPC with quad-issue in-order five-stage
pipeline

= Each physical CPU supports two virtual CPUs

= On L2 cache miss, pipeline is flushed and execution

switches to second thread

— short pipeline minimizes flush penalty (4 cycles), small
compared to memory access latency
— flush pipeline to simplify exception handling
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Oracle/Sun Niagara processors

= Target is datacenters running web servers and
databases, with many concurrent requests

= Provide multiple simple cores each with multiple
hardware threads, reduced energy/operation though
much lower single thread performance

= Niagara-1
= Niagara-2
= Niagara-3

2004]
2007]

2009]

, 8 cores, 4 threads/core
, 8 cores, 8 threads/core
.16 cores, 8 threads/core

= T4 [2011], 8 cores, 8 threads/core

= T5[2012], 16 cores, 8 threads/core
= M5 [2012], 6 cores, 8 threads/core
= M6 [2013], 12 cores, 8 threads/core
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Oracle/Sun Niagara-3, “Rainbow Falls” 2009
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Oracle M6 - 2013

. The Next Oracle Processor: SPARC M6

Max.

4MB 0.5TB 2*G2

28 16 128 8MB 0.5TB 2*G3 8

m 28 6 48 48MB 1TB 2*G3 32

M6 28 12 96 48MB 1TB 2*G3 96

ORACLE

10 | Cooyrignt © 2012, Oeacie andhor s afShates. AJ rights reso~vad
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Oracle M6 - 2013

. SPARC S3 Core

L1l core |l
1)

ewar) I

= Dual-issue, out-of-order -

e Thrsac
Ireturdnn Mt 1 11

YYVYYYYYY

£ threods

= Integrated encryption

. N . IT.2
acceleration instructions _ e |
i : av ! e e I e | N
= Enhanced instruction set to LT e § 3 |
accelerate Oracle SW stack i TP T
- 1-8 strands, dynamically I T i

threaded pipeline v bR

- 96 KD ’35 L d
(4 way) E v "-—‘
150 e rau || cevei ,
Sioto Sat

ORACLE

12 .’_'nﬁ,'-)-' © 201), Dracie anchor s 285 ates. AJ rights e ved
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Oracle M6 - 2013

. SPARC M6: Processor Overview

= 12 SPARC S3 cores, 96 threads

= 48MB shared L3 cache v )

- 4 DDR3 schedulers, maximum of (& F | s o e 28 powres o
1TB of memory per socket {4555 | core] Core | & v, y éfe

= 2 PCle 3.0 x8 lanes

= Up to 8 sockets glue-less scaling
= Up to 96 sockets glued scaling

= 4.1 Tbps total link bandwidth
= 4.27 billion transistors

EChena @

ORACLE

17 | Copyrignt © 2012, Dracks anchor ks affiates. Al rights resnwed
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Simultaneous Multithreading (SMT) for
000 Superscalars

= Techniques presented so far have all been “vertical”
multithreading where each pipeline stage works on
one thread at a time

= SMT uses fine-grain control already present inside an
000 superscalar to allow instructions from multiple
threads to enter execution on same clock cycle. Gives
better utilization of machine resources.

21
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For most apps, most execution units lie

idle in an 000 superscalar
AP A 2

g
o

100 = 7~ m = ] ™
221 | 1211 1417]E / |
A EHAME IR E < For an 8-way superscalar.
90 | ? D I N 4
S A [ e XN
f B2 memory conflict
50 ? Qlong fp
1 EH short fp
i 70 |1E EE long integer
o N | mshon integer
3 60 N : load delays
_"-‘f Q Dconlrol hazards
g s0 \\\ : B2 branch misprediction
QE-_: N | gdcachc miss
o) § : . .
v 40 Qf ﬂIIlcachc miss
8 AN & dub miss
& 30 N il
HINF itlb miss
S :: .proccssor busy
20 Nl
AN
10 s
From: Tullsen, Eggers, and Levy,
0 “Simultaneous Multithreading:
é

SwWm

Maximizing On-chip Parallelism”,
ISCA 1995.
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Superscalar Machine Efficiency

{ssue wid:th

Instruction
issue
Completely idle cycle
(vertical waste)
Time
Partially filled cycle,

i.e., IPC< 4
(horizontal waste)
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Vertical Multithreading

{ssue wid:th

Instruction
issue
Second thread interleaved
cycle-by-cycle
Time
Partially filled cycle,

i.e., IPC< 4
(horizontal waste)

Cycle-by-cycle interleaving removes vertical waste, but
leaves some horizontal waste
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Chip Multiprocessing (CMP)

Issue width

Time

= What is the effect of splitting into multiple processors?
— reduces horizontal waste,
— |leaves some vertical waste, and
— puts upper limit on peak throughput of each thread.
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Ideal Superscalar Multithreading

[Tullsen, Eggers, Levy, UW, 1995]

{ssue wic(th

'YX I X
004o0¢00
— Nl
— il
'YX
* 94
*0¢ o0
o040
. so——
Time os —
oo ==
s ——
e
e
T XY XXX
22 22X XX XXX
e

* Interleave multiple threads to multiple issue slots
with no restrictions
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0-0-0 Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

= Add multiple contexts and fetch engines and allow
instructions fetched from different threads to issue
simultaneously

= Utilize wide out-of-order superscalar processor issue
gueue to find instructions to issue from multiple
threads

= 000 instruction window already has most of the
circuitry required to schedule from multiple threads

= Any single thread can utilize whole machine
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SMT adaptation to parallelism type

For regions with high thread-level For regions with low thread-level
parallelism (TLP) entire machine parallelism (TLP) entire machine width
width is shared by all threads is available for instruction-level

parallelism (ILP)
Issue width Issue width

Time Time

28
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Pentium-4 Hyperthreading (2002)

= First commercial SMT design (2-way SMT)

= Logical processors share nearly all resources of the physical processor
— Caches, execution units, branch predictors

= Die area overhead of hyperthreading ~ 5%
= When one logical processor is stalled, the other can make progress
— No logical processor can use all entries in queues when two threads are active

= Processor running only one active software thread runs at approximately
same speed with or without hyperthreading

= Hyperthreading dropped on 00O P6 based followons to Pentium-4
(Pentium-M, Core Duo, Core 2 Duo), until revived with Nehalem generation
machines in 2008.

= Intel Atom (in-order x86 core) has two-way vertical multithreading
- Hyperthreading == (SMT for Intel 00O & Vertical for Intel InO)
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Single-threaded predecessor to Power

IBM Power 4

5. 8 execution units in

out-of-order engine, each may
iIssue an instruction each cycle.

Branch redirects

------------------------------------

: Instruction fetch

s

- IF 4 IC BP
g .|:
DO

D1

D2

—

D3

-

GD H-

1
1
[
1
1
I
1
1
I
1
1
: Interrupts and flushes
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Power 4

Branch redirects
: Instruction fetch
X L ~ MP = ISS [ RF  EX WB { Xfer
3|1 HicqspH
:" —| MP 1] ISS P RF [ EA ] DC [~ Fmt [] WB [ Xfer CP -,
1
1
1
X DO H DI H D2 H D3 (—Xfer GD H- MP [ ISS [ RF [ EX WB | Xfer !
: Instruction crack and :
: group formation —| MP [ ISS RF '
1
1
: F6 WB | Xfer :
1
: Interrupts and flushes :
L oo o o o o o o v o s ww ww  we me e w me me  We WE R E  R WE WE E  W W W  W  W W G  W  w we we we w
2 commits
B e adkacts Power 5 Out-of-order processing ( ar Ch i e ct e d
s egister,sets)
. Instruction fetch : pipeline
: ~ MP 1SS |- RF [ EX [ WB —{Xfer |
: Load/store
::: IF c B8P pipeline
: ~ MP [{1SS [ RF [ EA |—{DC [—{Fmt [—{WB [—ixfer CP [+
P b1 H b2 H pa HxterHaeo H- mp HfissH rr H ex | WB [Xfer| i
! ixed-point '
. Group formation and pipeline '
2f tch (PC instruction decode 'MF’—"SS‘RF“|F\J i
: etc ( )! | F6 ——WB [—{Xfer E
- = mgm Floating- :
: Z !n I%MQCOd es point pipeline ;
. 1

31

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015



-
Branch prediction ]

Shared
issue
gueues

Dynamic
instruction
selection

! f
Program Branch| B Return| | Target
counter history stack cache
tables
< z Alternate
Instruction
: buffer 0 Group formation
Insczgﬁéon Instruction decode
Dispatch
Instruction
translation
Thread
priority

Shared-
register
mappers

Shared
execution
Data Data
|FXUO| Translation Cache
LSU1
s — [FXUl—+ ¢ Group Store
- FPUO - completion queue
FPU1
[BXU | '
Data Data
Read Write translation | |cache
shared- shared- |
register files register files L2
cache

| [ Shared by two threads [ Thread 0 resources I Thread 1 resources |

Why only 2 threads? With 4, one of the shared resources

(physical registers, cache, memory bandwidth) would be

prone to bottleneck
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Initial Performance of SMT

= Pentium 4 Extreme SMT vyields 1.01 speedup for SPECint_rate

benchmark and 1.07 for SPECfp_rate
— Pentium 4 is dual threaded SMT
— SPECRate requires that each SPEC benchmark be run against a vendor-
selected number of copies of the same benchmark

= Running on Pentium 4 each of 26 SPEC benchmarks paired
with every other (262 runs) speed-ups from 0.90 to 1.58;
average was 1.20

= Power 5, 8-processor server 1.23 faster for SPECint_rate with
SMT, 1.16 faster for SPECfp_rate

= Power 5 running 2 copies of each app speedup between 0.89
and 1.41

— Most gained some
— FI.Pt. apps had most cache conflicts and least gains

33
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Icount Choosing Policy

Fetch from thread with the least instructions in flight.

Why does this enhance throughput?
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Summary: Multithreaded Categories

Superscalar

Simultaneous

Fine-Grained Coarse-Grained Multiprocessing nyitithreading

N

v

i

N

¥

Nl v

CS252, Fall 2015, Lecture 13

)

L>). BN BN BN

o B N R [ ]

B BN BN

wn DHEE ] B B

O NS

8 REEEE NNN

< B NN WINN

23

o HEE

J == N
I Thread 1 Thread 3
N Thread 2 % Thread 4
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Thread 5
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Multithreaded Design Discussion

= Want to build a multithreaded processor,

how should each component be changed
and what are the tradeoffs?

= |1 caches (instruction and data)

=| 2 caches

= Branch predictor

=TLB

= Physical register file
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