CS252 Graduate Computer Architecture
Fall 2015
Lecture 13: Multithreading

Krste Asanovic

krste@eecs.berkeley.edu
http://inst.eecs.berkeley.edu/~cs252/£fal5

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

CS252 Graduate Computer Architecture
Fall 2015
Lecture 13: Multithreading

Scott Beamer

sbeamer(deecs .berkeley. edu
http://inst.eecs.berkeley.edu/~cs252/£fal5

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

Last Time in Lecture 12

Synchronization and Memory Models

= Producer-Consumer versus Mutual Exclusion
= Sequential Consistency

= Relaxed Memory models
= Fences

= Atomic memory operations
= Non-Blocking Synchronization

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

Multithreading

= Difficult to continue to extract instruction-level
parallelism (ILP) from a single sequential thread of
control

= Many workloads can make use of thread-level
parallelism (TLP)

— TLP from multiprogramming (run independent sequential
jobs)

— TLP from multithreaded applications (run one job faster
using parallel threads)

= Multithreading uses TLP to improve utilization of a
single processor

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

One way is to interleave execution of instructions from
different program threads on same pipeline

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Tl1:LD x1,0(x2) | FIDIXIM WE_= Prior instruction in a
T2:ADD x7,x1,x4: |F|D|X e i i ithread always
T3:XORT x5.x4 .1 2 FID i completes write-back

: G i before next instruction
T4:5D 0(x7) ,x5 : _ F i in same thread reads
T1:LD x5,12(x1) : register file

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

CDC 6600 Peripheral Processors
(Cray, 1964)

»
» First multithreaded hardware

= 10 “virtual” I/O processors

= Fixed interleave on simple pipeline

= Pipeline has 100ns cycle time

= Each virtual processor executes one instruction every 1000ns
= Accumulator-based instruction set to reduce processor state

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

Simple Multithreaded Pipeline

— :X > _j‘
15 :Z | GPR1 = 1 LN -
:Y > é D$ ‘ .
A JL U I
+ <
1 _ _ W
W 2 Thread N2 A

select

= Have to carry thread select down pipeline to ensure correct state bits read/

written at each pipe stage
= Appears to software (including OS) as multiple, albeit slower, CPUs

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

Multithreading Costs

= Each thread requires its own user state
- PC
— GPRs

= Also, needs its own system state

— Virtual-memory page-table-base register
— Exception-handling registers

= Other overheads:
— Additional cache/TLB conflicts from competing threads
— (or add larger cache/TLB capacity)
— More OS overhead to schedule more threads (where do all these
threads come from?)

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

Thread Scheduling Policies

= Fixed interleave (coc 6600 Ppus, 1964)

— Each of N threads executes one instruction every N cycles
— If thread not ready to go in its slot, insert pipeline bubble

= Software-controlled interleave (11 asc ppus, 1971)
— OS allocates S pipeline slots amongst N threads
— Hardware performs fixed interleave over S slots, executing

whichever thread is in that slot

» Hardware-controlled thread schedu

INg (HEP, 1982)

— Hardware keeps track of which threads are ready to go
— Picks next thread to execute based on hardware priority

scheme

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

Denelcor HEP

(Burton Smith, 1982)

First commercial machine to use hardware threading in main CPU
— 120 threads per processor
— 10 MHz clock rate
— Up to 8 processors
— precursor to Tera MTA (Multithreaded Architecture)

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

10

Tera MTA (1990-)

Up to 256 processors

Up to 128 active threads per processor
Processors and memory modules populate a
sparse 3D torus interconnection fabric

Flat, shared main memory
— No data cache
— Sustains one main memory access per cycle per
processor

GaAs logic in prototype, 1KW/processor @

260MHz
— Second version CMOS, MTA-2, 50W/processor
— Newer version, XMT, fits into AMD Opteron socket,
runs at 500MHz
— Newest version, XMT2, has higher memory
bandwidth and capacity

11

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

MTA Pipeline

[Issue Pool] Inst Fetch

> e Every cycle, one VLIW
(W / l \ instruction from one active thread
A C is launched into pipeline
N e Instruction pipeline is 21 cycles
s (5] long
§ S W
[g' e Memory operations incur ~150
E g R'a cycles of latency
- "2
[Retry Pool]
Assuming a single thread issues one
instruction every 21 cycles, and clock rate
[Interconnection Network] is 260 MHz...
Memory pipeline What is single-thread performance?

Effective single-thread issue rate is
260/21 =12.4 MIPS

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015 1 2

Coarse-Grain Multithreading

= Tera MTA designed for supercomputing applications

with large data sets and low locality
— No data cache
— Many parallel threads needed to hide large memory latency

= Other applications are more cache friendly
— Few pipeline bubbles if cache mostly has hits
— Just add a few threads to hide occasional cache miss
latencies
— Swap threads on cache misses

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

13

CS252, Fall 2015, Lecture 13

MIT Alewife (1990)

= Modified SPARC chips

— register windows hold different
thread contexts

= Up to four threads per node
= Thread switch on local cache
miss

© Krste Asanovic, 2015

14

IBM PowerPC RS64-1V (2000)

= Commercial coarse-grain multithreading CPU

= Based on PowerPC with quad-issue in-order five-stage
pipeline

= Each physical CPU supports two virtual CPUs

= On L2 cache miss, pipeline is flushed and execution

switches to second thread

— short pipeline minimizes flush penalty (4 cycles), small
compared to memory access latency
— flush pipeline to simplify exception handling

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015 1 5

Oracle/Sun Niagara processors

= Target is datacenters running web servers and
databases, with many concurrent requests

= Provide multiple simple cores each with multiple
hardware threads, reduced energy/operation though
much lower single thread performance

= Niagara-1
= Niagara-2
= Niagara-3

2004]
2007]

2009]

, 8 cores, 4 threads/core
, 8 cores, 8 threads/core
.16 cores, 8 threads/core

= T4 [2011], 8 cores, 8 threads/core

= T5[2012], 16 cores, 8 threads/core
= M5 [2012], 6 cores, 8 threads/core
= M6 [2013], 12 cores, 8 threads/core

CS252, Fall 2015, Lecture 13

© Krste Asanovic, 2015

16

Oracle/Sun Niagara-3, “Rainbow Falls” 2009

B8

— u.f:v'zaummmnu T

Ty

RAINBOW FALLS

dy.";.,t. »,ui.* “ﬂ s;u.'ih. -

oo .o 3 0 5 05 Dl o o e B R ikl o oo

Lt g I S R R S e R b e

B R

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015 1 7

Oracle M6 - 2013

. The Next Oracle Processor: SPARC M6

Max.

4MB 0.5TB 2*G2

28 16 128 8MB 0.5TB 2*G3 8

m 28 6 48 48MB 1TB 2*G3 32

M6 28 12 96 48MB 1TB 2*G3 96

ORACLE

10 | Cooyrignt © 2012, Oeacie andhor s afShates. AJ rights reso~vad

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015 1 8

Oracle M6 - 2013

. SPARC S3 Core

L1l core |l
1)

ewar) I

= Dual-issue, out-of-order -

e Thrsac
Ireturdnn Mt 1 11

YYVYYYYYY

£ threods

= Integrated encryption

. N . IT.2
acceleration instructions _ e |
i : av ! e e I e | N
= Enhanced instruction set to LT e § 3 |
accelerate Oracle SW stack i TP T
- 1-8 strands, dynamically I T i

threaded pipeline v bR

- 96 KD ’35 L d
(4 way) E v "-—‘
150 e rau || cevei ,
Sioto Sat

ORACLE

12 .’_'nﬁ,'-)-' © 201), Dracie anchor s 285 ates. AJ rights e ved

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

19

Oracle M6 - 2013

. SPARC M6: Processor Overview

= 12 SPARC S3 cores, 96 threads

= 48MB shared L3 cache v)

- 4 DDR3 schedulers, maximum of (& F | s o e 28 powres o
1TB of memory per socket {4555 | core] Core | & v, y éfe

= 2 PCle 3.0 x8 lanes

= Up to 8 sockets glue-less scaling
= Up to 96 sockets glued scaling

= 4.1 Tbps total link bandwidth
= 4.27 billion transistors

EChena @

ORACLE

17 | Copyrignt © 2012, Dracks anchor ks affiates. Al rights resnwed

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015 20

Simultaneous Multithreading (SMT) for
000 Superscalars

= Techniques presented so far have all been “vertical”
multithreading where each pipeline stage works on
one thread at a time

= SMT uses fine-grain control already present inside an
000 superscalar to allow instructions from multiple
threads to enter execution on same clock cycle. Gives
better utilization of machine resources.

21

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

For most apps, most execution units lie

idle in an 000 superscalar
AP A 2

g
o

100 = 7~ m =] ™
221 | 1211 1417]E / |
A EHAME IR E < For an 8-way superscalar.
90 | ? D I N 4
S A [e XN
f B2 memory conflict
50 ? Qlong fp
1 EH short fp
i 70 |1E EE long integer
o N | mshon integer
3 60 N : load delays
_"-‘f Q Dconlrol hazards
g s0 \\\ : B2 branch misprediction
QE-_: N | gdcachc miss
o) § : . .
v 40 Qf ﬂIIlcachc miss
8 AN & dub miss
& 30 N il
HINF itlb miss
S :: .proccssor busy
20 Nl
AN
10 s
From: Tullsen, Eggers, and Levy,
0 “Simultaneous Multithreading:
é

SwWm

Maximizing On-chip Parallelism”,
ISCA 1995.

€252, Fall 2015, Lecture 13 Applicatigng e asanovic, 2015 22

alvinn
egniott
CSPresso
fpppp
hydro2d
mdljdp2
mdljsp2
su2cor
tomcecaty
composite

Superscalar Machine Efficiency

{ssue wid:th

Instruction
issue
Completely idle cycle
(vertical waste)
Time
Partially filled cycle,

i.e., IPC< 4
(horizontal waste)

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015 23

Vertical Multithreading

{ssue wid:th

Instruction
issue
Second thread interleaved
cycle-by-cycle
Time
Partially filled cycle,

i.e., IPC< 4
(horizontal waste)

Cycle-by-cycle interleaving removes vertical waste, but
leaves some horizontal waste

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015 24

Chip Multiprocessing (CMP)

Issue width

Time

= What is the effect of splitting into multiple processors?
— reduces horizontal waste,
— |leaves some vertical waste, and
— puts upper limit on peak throughput of each thread.

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

Ideal Superscalar Multithreading

[Tullsen, Eggers, Levy, UW, 1995]

{ssue wic(th

'YX I X
004o0¢00
— Nl
— il
'YX
* 94
*0¢ o0
o040
. so——
Time os —
oo ==
s ——
e
e
T XY XXX
22 22X XX XXX
e

* Interleave multiple threads to multiple issue slots
with no restrictions

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

26

0-0-0 Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

= Add multiple contexts and fetch engines and allow
instructions fetched from different threads to issue
simultaneously

= Utilize wide out-of-order superscalar processor issue
gueue to find instructions to issue from multiple
threads

= 000 instruction window already has most of the
circuitry required to schedule from multiple threads

= Any single thread can utilize whole machine

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

27

SMT adaptation to parallelism type

For regions with high thread-level For regions with low thread-level
parallelism (TLP) entire machine parallelism (TLP) entire machine width
width is shared by all threads is available for instruction-level

parallelism (ILP)
Issue width Issue width

Time Time

28

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

Pentium-4 Hyperthreading (2002)

= First commercial SMT design (2-way SMT)

= Logical processors share nearly all resources of the physical processor
— Caches, execution units, branch predictors

= Die area overhead of hyperthreading ~ 5%
= When one logical processor is stalled, the other can make progress
— No logical processor can use all entries in queues when two threads are active

= Processor running only one active software thread runs at approximately
same speed with or without hyperthreading

= Hyperthreading dropped on 00O P6 based followons to Pentium-4
(Pentium-M, Core Duo, Core 2 Duo), until revived with Nehalem generation
machines in 2008.

= Intel Atom (in-order x86 core) has two-way vertical multithreading
- Hyperthreading == (SMT for Intel 00O & Vertical for Intel InO)

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015 29

Single-threaded predecessor to Power

IBM Power 4

5. 8 execution units in

out-of-order engine, each may
iIssue an instruction each cycle.

Branch redirects

: Instruction fetch

s

- IF 4 IC BP
g .|:
DO

D1

D2

—

D3

-

GD H-

1
1
[
1
1
I
1
1
I
1
1
: Interrupts and flushes

CS252, Fall 2015, Lecture 13

Instruction crack and

group formation

© Krste Asanovic, 2015

H

HHH

Power 4

Branch redirects
: Instruction fetch
X L ~ MP = ISS [RF EX WB { Xfer
3|1 HicqspH
:" —| MP 1] ISS P RF [EA] DC [~ Fmt [] WB [Xfer CP -,
1
1
1
X DO H DI H D2 H D3 (—Xfer GD H- MP [ISS [RF [EX WB | Xfer !
: Instruction crack and :
: group formation —| MP [ISS RF '
1
1
: F6 WB | Xfer :
1
: Interrupts and flushes :
L oo o o o o o o v o s ww ww we me e w me me We WE R E R WE WE E W W W W W W G W w we we we w
2 commits
B e adkacts Power 5 Out-of-order processing (ar Ch i e ct e d
s egister,sets)
. Instruction fetch : pipeline
: ~ MP 1SS |- RF [EX [WB —{Xfer |
: Load/store
::: IF c B8P pipeline
: ~ MP [{1SS [RF [EA |—{DC [—{Fmt [—{WB [—ixfer CP [+
P b1 H b2 H pa HxterHaeo H- mp HfissH rr H ex | WB [Xfer| i
! ixed-point '
. Group formation and pipeline '
2f tch (PC instruction decode 'MF’—"SS‘RF“|F\J i
: etc ()! | F6 ——WB [—{Xfer E
- = mgm Floating- :
: Z !n I%MQCOd es point pipeline ;
. 1

31

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

-
Branch prediction]

Shared
issue
gueues

Dynamic
instruction
selection

! f
Program Branch| B Return| | Target
counter history stack cache
tables
< z Alternate
Instruction
: buffer 0 Group formation
Insczgﬁéon Instruction decode
Dispatch
Instruction
translation
Thread
priority

Shared-
register
mappers

Shared
execution
Data Data
|FXUO| Translation Cache
LSU1
s — [FXUl—+ ¢ Group Store
- FPUO - completion queue
FPU1
[BXU | '
Data Data
Read Write translation | |cache
shared- shared- |
register files register files L2
cache

| [Shared by two threads [Thread 0 resources I Thread 1 resources |

Why only 2 threads? With 4, one of the shared resources

(physical registers, cache, memory bandwidth) would be

prone to bottleneck

CS252, Fall 2015, Lecture 13

© Krste Asanovic, 2015

32

Initial Performance of SMT

= Pentium 4 Extreme SMT vyields 1.01 speedup for SPECint_rate

benchmark and 1.07 for SPECfp_rate
— Pentium 4 is dual threaded SMT
— SPECRate requires that each SPEC benchmark be run against a vendor-
selected number of copies of the same benchmark

= Running on Pentium 4 each of 26 SPEC benchmarks paired
with every other (262 runs) speed-ups from 0.90 to 1.58;
average was 1.20

= Power 5, 8-processor server 1.23 faster for SPECint_rate with
SMT, 1.16 faster for SPECfp_rate

= Power 5 running 2 copies of each app speedup between 0.89
and 1.41

— Most gained some
— FI.Pt. apps had most cache conflicts and least gains

33

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

Icount Choosing Policy

Fetch from thread with the least instructions in flight.

Why does this enhance throughput?

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

34

Summary: Multithreaded Categories

Superscalar

Simultaneous

Fine-Grained Coarse-Grained Multiprocessing nyitithreading

N

v

i

N

¥

Nl v

CS252, Fall 2015, Lecture 13

)

L>). BN BN BN

o B N R []

B BN BN

wn DHEE] B B

O NS

8 REEEE NNN

< B NN WINN

23

o HEE

J == N
I Thread 1 Thread 3
N Thread 2 % Thread 4

© Krste Asanovic, 2015

N

N
e W

ESLE

i

Thread 5
Idle slot
35

Multithreaded Design Discussion

= Want to build a multithreaded processor,

how should each component be changed
and what are the tradeoffs?

= |1 caches (instruction and data)

=| 2 caches

= Branch predictor

=TLB

= Physical register file

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015 36

Acknowledgements

= This course is partly inspired by previous MIT 6.823
and Berkeley CS252 computer architecture courses

created by my collaborators and colleagues:
— Krste Asanovic (UCB)
— Arvind (MIT)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)

CS252, Fall 2015, Lecture 13 © Krste Asanovic, 2015

37

