CS252 Graduate Computer Architecture

Fall 2015
Lecture 11: Memory

Krste Asanovic
krste@eecs.berkeley.edu
http://inst.eecs.berkeley.edu/~cs252/fal5

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

Last Time in Lecture 10

VLIW Machines

= Compiler-controlled static scheduling
= Loop unrolling

= Software pipelining

= Trace scheduling

= Rotating register file

= Predication

= Limits of static scheduling

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

Punched cards, From early
1700s through Jaquard Loom,

Babbage, and then IBM Punched paper tape,

instruction stream in
Harvard Mk 1

Diode Matrix, EDSAC-2
pcode store

v

IBM Balanced
Capacitor ROS

IBM Card Capacitor ROS

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015 3

Early Read/Write Main Memory Technologies

Babbage, 1800s: Digits
stored on mechanical wheels

i
Qi g Ang- e .

{18

R S

—
|3
]
—

1o

1.

Also, regenerative capacitor memory on
Atanasoff-Berry computer, and rotating
magnetic drum memory on IBM 650

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

MIT Whirlwind Core Memory

7 ‘ F _ -

PIHI
DIz S
TELES
*
X
el
N
1

b ”-;,ﬁﬁi

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

Core Memory

= Core memory was first large scale reliable main memory
— invented by Forrester in late 40s/early 50s at MIT for Whirlwind
project
= Bits stored as magnetization polarity on small ferrite cores
threaded onto two-dimensional grid of wires
= Coincident current pulses on X and Y wires would write

cell and also sense original state (destructive reads)

: UL
= Robust, non-volatile storage —
Datatalodod
= Used on space shuttle computers _ C Ll
G 2145
= Cores threaded onto wires by hand e

(25 billion a year at peak production)
= Core access time ~ 1us

DEC PDP-8/E Board,
4K words x 12 bits, (1968)

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

Semiconductor Memory

= Semiconductor memory began to be competitive in
early 1970s

— Intel formed to exploit market for semiconductor memory
— Early semiconductor memory was Static RAM (SRAM). SRAM cell
internals similar to a latch (cross-coupled inverters).

= First commercial Dynamic RAM (DRAM) was Intel
1103

— 1Kbit of storage on single chip
— charge on a capacitor used to hold value
— Value has to be regularly read and written back, hence dynamic

Semiconductor memory quickly replaced core in ‘70s

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

One-Transistor Dynamic RAM
[Dennard, IBM]

1-T DRAM Cell

I word
] .
_I__’__.\access transistor

Bl TiN top electrode (V)
VRer TiN/Ta205/W

Capacitor §§
bit
Storage

capacitor (FET gate,
trench, stack)

Wordline

poly
word

line access
transistor

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

Modern DRAM Cell Structure

- -

~ P N . e
:.—:-‘-f-—- il A I’w :

|
|
"

~:\'——A'

268887 28.0kV X100K

[Samsung, sub-70nm DRAM, 2004]

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015 9

DRAM Conceptual Architecture

bit lines

Col. Col. 41
1 M word lines
o [ERREEE v
Q
-5, [RREEREREE
3| koo ook
3 9 Row 2N
28| oo to oo t\
Memory cell
N+M M/ > Column Decoder & (one bit)

Sense Amplifiers

Data it D

= Bits stored in 2-dimensional arrays on chip

= Modern chips have around 4-8 logical banks on each chip
= each logical bank physically implemented as many smaller arrays

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

DRAM Physical Layout

Serializer and driver (begin of write data bus)

Row logic Column logic
| Center stripe local wordline driver stripe
| \
I / 4 .
local wordline (gate poly)
\ 7 /
3 N B \
777, master wordline (M2 - Al)
178
m -« bitline sense-amplifier stripe
7 7 7 N N
_ s local array data lines
2 7,)
NmRE| i
N
1 TR
| bitlines (M1 - W)
Array block Buffer
(bold line) column select line (M3 - Al) master array data lines (M3 - Al)
Sub-array Control logic

Figure 1. Physical floorplan of a DRAM. A DRAM actually contains a very large number of small DRAMs called sub-arrays.

[Vogelsang, MICRO-2010 |

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015 1 1

DRAM Packaging
(Laptops/Desktops/Servers)

ALY

~y

Clock and control signals —#—

ri=
s

-
FRLALLL Y

DRAM
chip

LA A A AR AL

SAAR AN

Address lines multiplexed
row/column address ~12

Data bus ,[»
(4b,8b,16b,32b)

BRLiaa80 154303
o 5,

AAA AAMARGRAREE EEALIR swrur

= DIMM (Dual Inline Memory Module) contains
multiple chips with clock/control/address signals
connected in parallel (sometimes need buffers to
drive signals to all chips)

= Data pins work together to return wide word (e.g.,
64-bit data bus using 16x4-bit parts)

-
-
»
-
»
-
-
-
-
-
-
-
-
»
-
-
-
-
-
-
-
.
-
-
-
-
-
-
-
-
-

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

DRAM Packaging, Mobile Devices

[Apple A4 package on circuit board]

~<\Two stacked
" DRAM die
« Processor
plus logic die

[Apple A4 package cross-section, iFixit 2010]

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015 1 3

DRAM Operation

Three steps in read/write access to a given bank

Row access (RAS)
— decode row address, enable addressed row (often multiple Kb in row)

— bitlines share charge with storage cell

— small change in voltage detected by sense amplifiers which latch whole
row of bits

— sense amplifiers drive bitlines full rail to recharge storage cells

Column access (CAS)

— decode column address to select small number of sense amplifier
latches (4, 8, 16, or 32 bits depending on DRAM package)

— on read, send latched bits out to chip pins

— on write, change sense amplifier latches which then charge storage
cells to required value

— can perform multiple column accesses on same row without another
row access (burst mode)

Precharge
— charges bit lines to known value, required before next row access
Each step has a latency of around 15-20ns in modern DRAMs

Various DRAM standards (DDR, RDRAM) have different ways of
encoding the signals for transmission to the DRAM, but all
share same core architecture

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

14

Memory Parameters

= Latency
— Time from initiation to completion of one memory read
(e.g., in nanoseconds, or in CPU or DRAM clock cycles)

= Occupancy
— Time that a memory bank is busy with one request
— Usually the important parameter for a memory write

= Bandwidth

— Rate at which requests can be processed (accesses/sec, or
GB/s)

= All can vary significantly for reads vs. writes, or
address, or address history (e.g., open/close page on
DRAM bank)

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015 1 5

Processor-DRAM Gap (latency)

LOOQ [oo -
S
L R R | Processor-Memory
g 100 Performance Gap:
- (growing 50%/yr)
O
O 10 | e e DRAM
o 7%/year
DRAM
1 O 1 o << 1N O N CDIOIH NN < n O I\IOOIO\IO
00 00 00 00 00O OO0 0O OO O OO0 OY OO OO O O OO OO OO O Oy O
O OO OO0 OO0 O O OO O O OO OO OO O O O O O
™ = e e]] el N

Time

Four-issue 3GHz superscalar accessing 100ns DRAM could execute 1,200
instructions during time for one memory access!

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

CPU

mall
emory

CS252, Fall 2015, Lecture 11

Physical Size Affects Latency

CPU

g Memory

= Signals have further to travel
= Fan out to more locations

© Krste Asanovic, 2015

17

Two predictable properties of memory references:

= Temporal Locality: If a location is referenced it
is likely to be referenced again in the near
future.

= Spatial Locality: If a location is referenced it is

likely that locations near it will be referenced
in the near future.

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

Memory Reference Patterns

%P. — -
. — . B . —— o g
. —rrr s b T - IO P PPl =

36 P LT T Ll b = i e i - e aP WA =" wo b s

_®

w
N

it iptareet | Temporal

= .,.J"x:.(: {n 1.:4.:\, vami -Hmnﬁuq_f se;,ur_. .

LA L P e — = ocali

W
o

IR L N T

N B —— - S S - - w——— -..—-—--———-—_.

B >
W .-:o',,WQ- ;ugn.u\ B N

N
N
“' T

2‘ B - a— mwemee .- - —— - - A —— . —— - -.”“4“-:‘& . - 225 (e -

T A LA —

[— A i p s e .. -

N
[
b
'
i
r

20F DN EIOLE S A DETAE P 0 MR LR 1 L M LRy ;. s 81 P' - f

Memory Address (one dot per access)

s e T Lt e Y g Y aet -t

> tl‘ﬁ"""lnﬂﬂm'\‘ll”llﬂl.ﬂﬂﬂll”lﬂll lllll lll n. llll.]ﬂ‘ i I
18J

Donald J. Hatfield, Jeanette Gerald: Program Restruc-:l’-cltﬁrr'ﬁ\g
cs2s2 Fatl 015, e TOF Virtual Memayy,.. IBIM Systems Journal 10(3): 168-192

Memory Hierarchy

= Small, fast memory near processor to buffer accesses

to big, slow memory
— Make combination look like a big, fast memory

= Keep recently accessed data in small fast memory

closer to processor to exploit temporal locality
— Cache replacement policy favors recently accessed data

= Fetch words around requested word to exploit spatial

locality
— Use multiword cache lines, and prefetching

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015 20

Management of Memory Hierarchy

= Small/fast storage, e.g., registers
— Address usually specified in instruction
— Generally implemented directly as a register file
— but hardware might do things behind software’s
back, e.qg., stack management, register renaming

o Larger/slower storage, e.g., main memory
— Address usually computed from values in register
— Generally implemented as a hardware-managed cache
hierarchy (hardware decides what is kept in fast
memory)
— but software may provide “hints”, e.qg., don’t cache
or prefetch

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

21

Important Cache Parameters (Review)

= Capacity (in bytes)

= Associativity (from direct-mapped to fully associative)
= Line size (bytes sharing a tag)

= Write-back versus write-through

= Write-allocate versus write no-allocate

= Replacement policy (least recently used, random)

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

22

Improving Cache Performance

Average memory access time (AMAT) =
Hit time + Miss rate x Miss penalty

To improve performance:
e reduce the hit time
e reduce the miss rate
e reduce the miss penalty
What is best cache design for 5-stage pipeline?

Biggest cache that doesn’t increase hit time past 1 cycle
(approx 8-32KB in modern technology)

[design issues more complex with deeper pipelines and/or out-of-
order superscalar processors]

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015 23

Causes of Cache Misses: The 3 C’s

= Compulsory: first reference to a line (a.k.a. cold start

misses)
— misses that would occur even with infinite cache
= Capacity: cache is too small to hold all data needed
by the program
— misses that would occur even under perfect replacement
policy
= Conflict: misses that occur because of collisions due

to line-placement strategy
— misses that would not occur with ideal full associativity

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015 24

Effect of Cache Parameters on
Performance

= Larger cache size
+ reduces capacity and conflict misses
- hit time will increase

= Higher associativity
+ reduces conflict misses
- may increase hit time

= Larger line size

+ reduces compulsory misses
- increases conflict misses and miss penalty

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

25

Multilevel Caches

Problem: A memory cannot be large and fast
Solution: Increasing sizes of cache at each level

CPU [—{L1$|—{ 12¢ [—| DRAM

Local miss rate = misses in cache / accesses to cache
Global miss rate = misses in cache / CPU memory accesses
Misses per instruction = misses in cache / number of instructions

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015 26

Presence of L2 influences L1 design

= Use smaller L1 if there is also L2
— Trade increased L1 miss rate for reduced L1 hit time
— Backup L2 reduces L1 miss penalty
— Reduces average access energy

= Use simpler write-through L1 with on-chip L2

— Write-back L2 cache absorbs write traffic, doesn’t go off-
chip

— At most one L1 miss request per L1 access (no dirty victim
write back) simplifies pipeline control

— Simplifies coherence issues

— Simplifies error recovery in L1 (can use just parity bits in L1
and reload from L2 when parity error detected on L1 read)

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015 27

Inclusion Policy

= Inclusive multilevel cache:
— Inner cache can only hold lines also present in outer cache
— External coherence snoop access need only check outer
cache

= Exclusive multilevel caches:
— Inner cache may hold lines not in outer cache
— Swap lines between inner/outer caches on miss
— Used in AMD Athlon with 64KB primary and 256KB
secondary cache

= Why choose one type or the other?

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015 28

Power 7 On-Chip Caches [IBM 2009]

32KB L1 IS/core
32KB L1 DS/core
3-cycle latency

256KB Unified L2S/core
8-cycle latency

32MB Unified Shared L3S
Embedded DRAM (eDRAM)
25-cycle latency to local
slice

o

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

Prefetching

= Speculate on future instruction and data accesses and
fetch them into cache(s)
— Instruction accesses easier to predict than data accesses

= VVarieties of prefetching
— Hardware prefetching
— Software prefetching
— Mixed schemes

= What types of misses does prefetching affect?

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

30

Issues in Prefetching

= Usefulness — should produce hits
= Timeliness — not late and not too early
= Cache and bandwidth pollution

CPU
11l

RF

= | 1 Instruction

[P | 1 Data

CS252, Fall 2015, Lecture 11

Unified L2
Cache

ol

Prefetched data

© Krste Asanovic, 2015

31

Hardware Instruction Prefetching

= Instruction prefetch in Alpha AXP 21064
— Fetch two lines on a miss; the requested line (i) and the
next consecutive line (i+1)
— Requested line placed in cache, and next line in instruction
stream buffer
— If miss in cache but hit in stream buffer, move stream
buffer line into cache and prefetch next line (i+2)

Req

CPU
1t

RF

h

line I Buffer

Stream

L1
Instruction

CS252, Fall 2015, Lecture 11

Prefetched
instruction line

Unified L2

Req Cache
line

© Krste Asanovic, 2015

32

Hardware Data Prefetching

» Prefetch-on-miss:
— Prefetch b + 1 upon misson b

= One-Block Lookahead (OBL) scheme

— Initiate prefetch for block b + 1 when block b is accessed
— Why is this different from doubling block size?
— Can extend to N-block lookahead

= Strided prefetch

— If observe sequence of accesses to line b, b+N, b+2N, then
prefetch b+3N etc.

= Example: IBM Power 5 [2003] supports eight
independent streams of strided prefetch per
processor, prefetching 12 lines ahead of current
access

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

33

CS252, Fall 2015, Lecture 11

Software Prefetching

for(i=0; 1 < N; i++) {
prefetch(&af[i1 + 1])
prefetch(&b[1 + 1]),
SUM = SUM + a[i] * b[i];

© Krste Asanovic, 2015

34

Software Prefetching Issues

* Timing is the biggest issue, not predictability
— If you prefetch very close to when the data is required, you
might be too late
— Prefetch too early, cause pollution
— Estimate how long it will take for the data to come into L1,
so we can set P appropriately
— Why is this hard to do?

for(i=0; i < N; i++) {
prefetch(&a[i + P]);

prefetch(&b[i + P]);
SUM = SUM + a[i] * b[i];

Must consider cost of prefetch instructions

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015 35

Compiler Optimizations

= Restructuring code affects the data access sequence
— Group data accesses together to improve spatial locality
— Re-order data accesses to improve temporal locality

* Prevent data from entering the cache
— Useful for variables that will only be accessed once before
being replaced
— Needs mechanism for software to tell hardware not to
cache data (“no-allocate” instruction hints or page table
bits)
= Kill data that will never be used again
— Streaming data exploits spatial locality but not temporal

locality
— Replace into dead cache locations

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

36

Acknowledgements

= This course is partly inspired by previous MIT 6.823
and Berkeley C5252 computer architecture courses

created by my collaborators and colleagues:
— Arvind (MIT)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)

CS252, Fall 2015, Lecture 11 © Krste Asanovic, 2015

37

