CS252 Graduate Computer Architecture Fall 2015 Lecture 11: Memory

Krste Asanovic

krste@eecs.berkeley.edu

http://inst.eecs.berkeley.edu/~cs252/fa15

Last Time in Lecture 10

VLIW Machines

- Compiler-controlled static scheduling
- Loop unrolling
- Software pipelining
- Trace scheduling
- Rotating register file
- Predication
- Limits of static scheduling

Early Read-Only Memory Technologies

Punched cards, From early 1700s through Jaquard Loom, Babbage, and then IBM

Punched paper tape, instruction stream in Harvard Mk 1

IBM Card Capacitor ROS

Capacitor ROS

Early Read/Write Main Memory Technologies

Babbage, 1800s: Digits stored on mechanical wheels

Also, regenerative capacitor memory on Atanasoff-Berry computer, and rotating magnetic drum memory on IBM 650

Mercury Delay Line, Univac 1, 1951

MIT Whirlwind Core Memory

Core Memory

- Core memory was first large scale reliable main memory
 - invented by Forrester in late 40s/early 50s at MIT for Whirlwind project
- Bits stored as magnetization polarity on small ferrite cores threaded onto two-dimensional grid of wires
- Coincident current pulses on X and Y wires would write cell and also sense original state (destructive reads)
- Robust, non-volatile storage
- Used on space shuttle computers
- Cores threaded onto wires by hand (25 billion a year at peak production)
- Core access time ~ 1μs

DEC PDP-8/E Board, 4K words x 12 bits, (1968)

Semiconductor Memory

- Semiconductor memory began to be competitive in early 1970s
 - Intel formed to exploit market for semiconductor memory
 - Early semiconductor memory was Static RAM (SRAM). SRAM cell internals similar to a latch (cross-coupled inverters).
- First commercial Dynamic RAM (DRAM) was Intel
 1103
 - 1Kbit of storage on single chip
 - charge on a capacitor used to hold value
 - Value has to be regularly read and written back, hence dynamic

Semiconductor memory quickly replaced core in '70s

One-Transistor Dynamic RAM [Dennard, IBM]

Storage capacitor (FET gate, trench, stack)

Modern DRAM Cell Structure

[Samsung, sub-70nm DRAM, 2004]

DRAM Conceptual Architecture

- Bits stored in 2-dimensional arrays on chip
- Modern chips have around 4-8 logical banks on each chip
 - each logical bank physically implemented as many smaller arrays

DRAM Physical Layout

Serializer and driver (begin of write data bus) Row logic Column logic local wordline driver stripe Center stripe local wordline (gate poly) master wordline (M2 - AI) 1.8 → bitline sense-amplifier stripe local array data lines bitlines (M1 - W) Array block Buffer (bold line) column select line (M3 - AI) master array data lines (M3 - Al) Sub-array Control logic

Figure 1. Physical floorplan of a DRAM. A DRAM actually contains a very large number of small DRAMs called sub-arrays.

[Vogelsang, MICRO-2010]

DRAM Packaging

(Laptops/Desktops/Servers)

- DIMM (Dual Inline Memory Module) contains multiple chips with clock/control/address signals connected in parallel (sometimes need buffers to drive signals to all chips)
- Data pins work together to return wide word (e.g., 64-bit data bus using 16x4-bit parts)

DRAM Packaging, Mobile Devices

[Apple A4 package cross-section, iFixit 2010]

DRAM Operation

- Three steps in read/write access to a given bank
- Row access (RAS)
 - decode row address, enable addressed row (often multiple Kb in row)
 - bitlines share charge with storage cell
 - small change in voltage detected by sense amplifiers which latch whole row of bits
 - sense amplifiers drive bitlines full rail to recharge storage cells
- Column access (CAS)
 - decode column address to select small number of sense amplifier latches (4, 8, 16, or 32 bits depending on DRAM package)
 - on read, send latched bits out to chip pins
 - on write, change sense amplifier latches which then charge storage cells to required value
 - can perform multiple column accesses on same row without another row access (burst mode)
- Precharge
 - charges bit lines to known value, required before next row access
- Each step has a latency of around 15-20ns in modern DRAMs
- Various DRAM standards (DDR, RDRAM) have different ways of encoding the signals for transmission to the DRAM, but all share same core architecture

Memory Parameters

Latency

 Time from initiation to completion of one memory read (e.g., in nanoseconds, or in CPU or DRAM clock cycles)

Occupancy

- Time that a memory bank is busy with one request
- Usually the important parameter for a memory write

Bandwidth

- Rate at which requests can be processed (accesses/sec, or GB/s)
- All can vary significantly for reads vs. writes, or address, or address history (e.g., open/close page on DRAM bank)

Processor-DRAM Gap (latency)

Four-issue 3GHz superscalar accessing 100ns DRAM could execute 1,200 instructions during time for one memory access!

Physical Size Affects Latency

Two predictable properties of memory references:

- Temporal Locality: If a location is referenced it is likely to be referenced again in the near future.
- Spatial Locality: If a location is referenced it is likely that locations near it will be referenced in the near future.

Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory, IBM Systems Journal 10(3): 168-192

Memory Hierarchy

- Small, fast memory near processor to buffer accesses to big, slow memory
 - Make combination look like a big, fast memory
- Keep recently accessed data in small fast memory closer to processor to exploit temporal locality
 - Cache replacement policy favors recently accessed data
- Fetch words around requested word to exploit spatial locality
 - Use multiword cache lines, and prefetching

Management of Memory Hierarchy

- Small/fast storage, e.g., registers
 - Address usually specified in instruction
 - Generally implemented directly as a register file
 - but hardware might do things behind software's back, e.g., stack management, register renaming
- Larger/slower storage, e.g., main memory
 - Address usually computed from values in register
 - Generally implemented as a hardware-managed cache hierarchy (hardware decides what is kept in fast memory)
 - but software may provide "hints", e.g., don't cache or prefetch

Important Cache Parameters (Review)

- Capacity (in bytes)
- Associativity (from direct-mapped to fully associative)
- Line size (bytes sharing a tag)
- Write-back versus write-through
- Write-allocate versus write no-allocate
- Replacement policy (least recently used, random)

Improving Cache Performance

Average memory access time (AMAT) =

Hit time + Miss rate x Miss penalty

To improve performance:

- reduce the hit time
- reduce the miss rate
- reduce the miss penalty

What is best cache design for 5-stage pipeline?

Biggest cache that doesn't increase hit time past 1 cycle (approx 8-32KB in modern technology)

[design issues more complex with deeper pipelines and/or out-of-order superscalar processors]

Causes of Cache Misses: The 3 C's

- Compulsory: first reference to a line (a.k.a. cold start misses)
 - misses that would occur even with infinite cache
- Capacity: cache is too small to hold all data needed by the program
 - misses that would occur even under perfect replacement policy
- Conflict: misses that occur because of collisions due to line-placement strategy
 - misses that would not occur with ideal full associativity

Effect of Cache Parameters on Performance

- Larger cache size
 - + reduces capacity and conflict misses
 - hit time will increase
- Higher associativity
 - + reduces conflict misses
 - may increase hit time
- Larger line size
 - + reduces compulsory misses
 - increases conflict misses and miss penalty

Multilevel Caches

Problem: A memory cannot be large and fast **Solution**: Increasing sizes of cache at each level

Local miss rate = misses in cache / accesses to cache Global miss rate = misses in cache / CPU memory accesses Misses per instruction = misses in cache / number of instructions

Presence of L2 influences L1 design

- Use smaller L1 if there is also L2
 - Trade increased L1 miss rate for reduced L1 hit time
 - Backup L2 reduces L1 miss penalty
 - Reduces average access energy
- Use simpler write-through L1 with on-chip L2
 - Write-back L2 cache absorbs write traffic, doesn't go offchip
 - At most one L1 miss request per L1 access (no dirty victim write back) simplifies pipeline control
 - Simplifies coherence issues
 - Simplifies error recovery in L1 (can use just parity bits in L1 and reload from L2 when parity error detected on L1 read)

Inclusion Policy

- Inclusive multilevel cache:
 - Inner cache can only hold lines also present in outer cache
 - External coherence snoop access need only check outer cache
- Exclusive multilevel caches:
 - Inner cache may hold lines not in outer cache
 - Swap lines between inner/outer caches on miss
 - Used in AMD Athlon with 64KB primary and 256KB secondary cache
- Why choose one type or the other?

Power 7 On-Chip Caches [IBM 2009]

32KB L1 I\$/core 32KB L1 D\$/core 3-cycle latency

256KB Unified L2\$/core 8-cycle latency

32MB Unified Shared L3\$
Embedded DRAM (eDRAM)
25-cycle latency to local
slice

Prefetching

- Speculate on future instruction and data accesses and fetch them into cache(s)
 - Instruction accesses easier to predict than data accesses
- Varieties of prefetching
 - Hardware prefetching
 - Software prefetching
 - Mixed schemes
- What types of misses does prefetching affect?

Issues in Prefetching

- Usefulness should produce hits
- Timeliness not late and not too early
- Cache and bandwidth pollution

Hardware Instruction Prefetching

- Instruction prefetch in Alpha AXP 21064
 - Fetch two lines on a miss; the requested line (i) and the next consecutive line (i+1)
 - Requested line placed in cache, and next line in instruction stream buffer
 - If miss in cache but hit in stream buffer, move stream buffer line into cache and prefetch next line (i+2)

Hardware Data Prefetching

- Prefetch-on-miss:
 - Prefetch b + 1 upon miss on b
- One-Block Lookahead (OBL) scheme
 - Initiate prefetch for block b + 1 when block b is accessed
 - Why is this different from doubling block size?
 - Can extend to N-block lookahead
- Strided prefetch
 - If observe sequence of accesses to line b, b+N, b+2N, then prefetch b+3N etc.
- Example: IBM Power 5 [2003] supports eight independent streams of strided prefetch per processor, prefetching 12 lines ahead of current access

Software Prefetching

```
for(i=0; i < N; i++) {
    prefetch( &a[i + 1] );
    prefetch( &b[i + 1] );
    SUM = SUM + a[i] * b[i];
}</pre>
```

Software Prefetching Issues

- Timing is the biggest issue, not predictability
 - If you prefetch very close to when the data is required, you might be too late
 - Prefetch too early, cause pollution
 - Estimate how long it will take for the data to come into L1,
 so we can set P appropriately
 - Why is this hard to do?

```
for(i=0; i < N; i++) {
    prefetch( &a[i + P] );
    prefetch( &b[i + P] );
    SUM = SUM + a[i] * b[i];
}</pre>
```

Must consider cost of prefetch instructions

Compiler Optimizations

- Restructuring code affects the data access sequence
 - Group data accesses together to improve spatial locality
 - Re-order data accesses to improve temporal locality
- Prevent data from entering the cache
 - Useful for variables that will only be accessed once before being replaced
 - Needs mechanism for software to tell hardware not to cache data ("no-allocate" instruction hints or page table bits)
- Kill data that will never be used again
 - Streaming data exploits spatial locality but not temporal locality
 - Replace into dead cache locations

Acknowledgements

- This course is partly inspired by previous MIT 6.823 and Berkeley CS252 computer architecture courses created by my collaborators and colleagues:
 - Arvind (MIT)
 - Joel Emer (Intel/MIT)
 - James Hoe (CMU)
 - John Kubiatowicz (UCB)
 - David Patterson (UCB)