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Last Time in Lecture 10

VLIW Machines

= Compiler-controlled static scheduling
= Loop unrolling

= Software pipelining

= Trace scheduling

= Rotating register file

= Predication

= Limits of static scheduling
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Early Read/Write Main Memory Technologies

Babbage, 1800s: Digits
stored on mechanical wheels
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Also, regenerative capacitor memory on
Atanasoff-Berry computer, and rotating
magnetic drum memory on IBM 650
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MIT Whirlwind Core Memory
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Core Memory

= Core memory was first large scale reliable main memory
— invented by Forrester in late 40s/early 50s at MIT for Whirlwind
project
= Bits stored as magnetization polarity on small ferrite cores
threaded onto two-dimensional grid of wires
= Coincident current pulses on X and Y wires would write

cell and also sense original state (destructive reads)

: UL
= Robust, non-volatile storage —
Datatalodod
= Used on space shuttle computers _ C Ll
G 2145
= Cores threaded onto wires by hand e

(25 billion a year at peak production)
= Core access time ~ 1us

DEC PDP-8/E Board,
4K words x 12 bits, (1968)
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Semiconductor Memory

= Semiconductor memory began to be competitive in
early 1970s

— Intel formed to exploit market for semiconductor memory
— Early semiconductor memory was Static RAM (SRAM). SRAM cell
internals similar to a latch (cross-coupled inverters).

= First commercial Dynamic RAM (DRAM) was Intel
1103

— 1Kbit of storage on single chip
— charge on a capacitor used to hold value
— Value has to be regularly read and written back, hence dynamic

Semiconductor memory quickly replaced core in ‘70s
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One-Transistor Dynamic RAM
[Dennard, IBM]
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Modern DRAM Cell Structure

- -

~ P N . e
:.—:-‘-f-—- il A I’w :

|
|
"

~:\'——A'

268887 28.0kV X100K

[Samsung, sub-70nm DRAM, 2004]
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DRAM Conceptual Architecture

bit lines
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= Bits stored in 2-dimensional arrays on chip

= Modern chips have around 4-8 logical banks on each chip
= each logical bank physically implemented as many smaller arrays
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DRAM Physical Layout

Serializer and driver (begin of write data bus)
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Figure 1. Physical floorplan of a DRAM. A DRAM actually contains a very large number of small DRAMs called sub-arrays.

[ Vogelsang, MICRO-2010 |
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DRAM Packaging
(Laptops/Desktops/Servers)
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= DIMM (Dual Inline Memory Module) contains
multiple chips with clock/control/address signals
connected in parallel (sometimes need buffers to
drive signals to all chips)

= Data pins work together to return wide word (e.g.,
64-bit data bus using 16x4-bit parts)
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DRAM Packaging, Mobile Devices

[ Apple A4 package on circuit board]

~<\Two stacked
" DRAM die
«  Processor
plus logic die

[ Apple A4 package cross-section, iFixit 2010 ]
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DRAM Operation

Three steps in read/write access to a given bank

Row access (RAS)
— decode row address, enable addressed row (often multiple Kb in row)

— bitlines share charge with storage cell

— small change in voltage detected by sense amplifiers which latch whole
row of bits

— sense amplifiers drive bitlines full rail to recharge storage cells

Column access (CAS)

— decode column address to select small number of sense amplifier
latches (4, 8, 16, or 32 bits depending on DRAM package)

— on read, send latched bits out to chip pins

— on write, change sense amplifier latches which then charge storage
cells to required value

— can perform multiple column accesses on same row without another
row access (burst mode)

Precharge
— charges bit lines to known value, required before next row access
Each step has a latency of around 15-20ns in modern DRAMs

Various DRAM standards (DDR, RDRAM) have different ways of
encoding the signals for transmission to the DRAM, but all
share same core architecture
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Memory Parameters

= Latency
— Time from initiation to completion of one memory read
(e.g., in nanoseconds, or in CPU or DRAM clock cycles)

= Occupancy
— Time that a memory bank is busy with one request
— Usually the important parameter for a memory write

= Bandwidth

— Rate at which requests can be processed (accesses/sec, or
GB/s)

= All can vary significantly for reads vs. writes, or
address, or address history (e.g., open/close page on
DRAM bank)
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Processor-DRAM Gap (latency)
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Four-issue 3GHz superscalar accessing 100ns DRAM could execute 1,200
instructions during time for one memory access!
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Physical Size Affects Latency

CPU

g Memory

= Signals have further to travel
= Fan out to more locations
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Two predictable properties of memory references:

= Temporal Locality: If a location is referenced it
is likely to be referenced again in the near
future.

= Spatial Locality: If a location is referenced it is

likely that locations near it will be referenced
in the near future.
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Memory Reference Patterns
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Memory Hierarchy

= Small, fast memory near processor to buffer accesses

to big, slow memory
— Make combination look like a big, fast memory

= Keep recently accessed data in small fast memory

closer to processor to exploit temporal locality
— Cache replacement policy favors recently accessed data

= Fetch words around requested word to exploit spatial

locality
— Use multiword cache lines, and prefetching
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Management of Memory Hierarchy

= Small/fast storage, e.g., registers
— Address usually specified in instruction
— Generally implemented directly as a register file
— but hardware might do things behind software’s
back, e.qg., stack management, register renaming

o Larger/slower storage, e.g., main memory
— Address usually computed from values in register
— Generally implemented as a hardware-managed cache
hierarchy (hardware decides what is kept in fast
memory)
— but software may provide “hints”, e.qg., don’t cache
or prefetch
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Important Cache Parameters (Review)

= Capacity (in bytes)

= Associativity (from direct-mapped to fully associative)
= Line size (bytes sharing a tag)

= Write-back versus write-through

= Write-allocate versus write no-allocate

= Replacement policy (least recently used, random)
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Improving Cache Performance

Average memory access time (AMAT) =
Hit time + Miss rate x Miss penalty

To improve performance:
e reduce the hit time
e reduce the miss rate
e reduce the miss penalty
What is best cache design for 5-stage pipeline?

Biggest cache that doesn’t increase hit time past 1 cycle
(approx 8-32KB in modern technology)

[ design issues more complex with deeper pipelines and/or out-of-
order superscalar processors]
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Causes of Cache Misses: The 3 C’s

= Compulsory: first reference to a line (a.k.a. cold start

misses)
— misses that would occur even with infinite cache
= Capacity: cache is too small to hold all data needed
by the program
— misses that would occur even under perfect replacement
policy
= Conflict: misses that occur because of collisions due

to line-placement strategy
— misses that would not occur with ideal full associativity
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Effect of Cache Parameters on
Performance

= Larger cache size
+ reduces capacity and conflict misses
- hit time will increase

= Higher associativity
+ reduces conflict misses
- may increase hit time

= Larger line size

+ reduces compulsory misses
- increases conflict misses and miss penalty
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Multilevel Caches

Problem: A memory cannot be large and fast
Solution: Increasing sizes of cache at each level

CPU [—{L1$|—{ 12¢ [—| DRAM

Local miss rate = misses in cache / accesses to cache
Global miss rate = misses in cache / CPU memory accesses
Misses per instruction = misses in cache / number of instructions
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Presence of L2 influences L1 design

= Use smaller L1 if there is also L2
— Trade increased L1 miss rate for reduced L1 hit time
— Backup L2 reduces L1 miss penalty
— Reduces average access energy

= Use simpler write-through L1 with on-chip L2

— Write-back L2 cache absorbs write traffic, doesn’t go off-
chip

— At most one L1 miss request per L1 access (no dirty victim
write back) simplifies pipeline control

— Simplifies coherence issues

— Simplifies error recovery in L1 (can use just parity bits in L1
and reload from L2 when parity error detected on L1 read)
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Inclusion Policy

= Inclusive multilevel cache:
— Inner cache can only hold lines also present in outer cache
— External coherence snoop access need only check outer
cache

= Exclusive multilevel caches:
— Inner cache may hold lines not in outer cache
— Swap lines between inner/outer caches on miss
— Used in AMD Athlon with 64KB primary and 256KB
secondary cache

= Why choose one type or the other?
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Power 7 On-Chip Caches [IBM 2009]

32KB L1 IS/core
32KB L1 DS/core
3-cycle latency

256KB Unified L2S/core
8-cycle latency

32MB Unified Shared L3S
Embedded DRAM (eDRAM)
25-cycle latency to local
slice

o
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Prefetching

= Speculate on future instruction and data accesses and
fetch them into cache(s)
— Instruction accesses easier to predict than data accesses

= VVarieties of prefetching
— Hardware prefetching
— Software prefetching
— Mixed schemes

= What types of misses does prefetching affect?
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Issues in Prefetching

= Usefulness — should produce hits
= Timeliness — not late and not too early
= Cache and bandwidth pollution

CPU
11l

RF

= | 1 Instruction

[P | 1 Data
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Unified L2
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Hardware Instruction Prefetching

= Instruction prefetch in Alpha AXP 21064
— Fetch two lines on a miss; the requested line (i) and the
next consecutive line (i+1)
— Requested line placed in cache, and next line in instruction
stream buffer
— If miss in cache but hit in stream buffer, move stream
buffer line into cache and prefetch next line (i+2)

Req

CPU
1t

RF

h

line I Buffer

Stream

L1
Instruction
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Hardware Data Prefetching

» Prefetch-on-miss:
— Prefetch b + 1 upon misson b

= One-Block Lookahead (OBL) scheme

— Initiate prefetch for block b + 1 when block b is accessed
— Why is this different from doubling block size?
— Can extend to N-block lookahead

= Strided prefetch

— If observe sequence of accesses to line b, b+N, b+2N, then
prefetch b+3N etc.

= Example: IBM Power 5 [2003] supports eight
independent streams of strided prefetch per
processor, prefetching 12 lines ahead of current
access
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Software Prefetching

for(i=0; 1 < N; i++) {
prefetch( &af[i1 + 1] )
prefetch( &b[1 + 1] ),
SUM = SUM + a[i] * b[i];

© Krste Asanovic, 2015
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Software Prefetching Issues

* Timing is the biggest issue, not predictability
— If you prefetch very close to when the data is required, you
might be too late
— Prefetch too early, cause pollution
— Estimate how long it will take for the data to come into L1,
so we can set P appropriately
— Why is this hard to do?

for(i=0; i < N; i++) {
prefetch( &a[i + P] );

prefetch( &b[i + P] );
SUM = SUM + a[i] * b[i];

Must consider cost of prefetch instructions
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Compiler Optimizations

= Restructuring code affects the data access sequence
— Group data accesses together to improve spatial locality
— Re-order data accesses to improve temporal locality

* Prevent data from entering the cache
— Useful for variables that will only be accessed once before
being replaced
— Needs mechanism for software to tell hardware not to
cache data (“no-allocate” instruction hints or page table
bits)
= Kill data that will never be used again
— Streaming data exploits spatial locality but not temporal

locality
— Replace into dead cache locations
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