CS252 Graduate Computer Architecture

Fall 2015
Lecture 9: Vector Supercomputers

Krste Asanovic
krste@eecs.berkeley.edu
http://inst.eecs.berkeley.edu/~cs252/falb

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015



Last Time in Lecture 8

Overcoming the worst hazards in OoO superscalars:
= Branch prediction
= Load-Store Queues

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015



Supercomputer Applications

= Typical application areas

— Military research (nuclear weapons, cryptography)
— Scientific research

— Weather forecasting

— Oil exploration

— Industrial design (car crash simulation)

— Bioinformatics

— Cryptography

= All involve huge computations on large data set
= Supercomputers: CDC6600, CDC7600, Cray-1, ...

* |[n 70s-80s, Supercomputer = Vector Machine

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015



Vector Supercomputers

» Epitomized by Cray-1, 1976:
= Scalar Unit
— Load/Store Architecture

= \Vector Extension
— Vector Registers
— Vector Instructions

* Implementation
| — Hardwired Control
— Highly Pipelined Functional
Units
— Interleaved Memory System
— No Data Caches
— No Virtual Memory

[©Cray Research, 1976]

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015




Vector Programming Model

/ Scalar Registers Vector Registers
x31 v3l
x0 V001 111 121 [VLRMAX-1]

Vector Length Register

VLR

o
p

Vector Arithmetic

vl

/
-

| ]
/ /
| ]

v2! 7y

Instructions
vadd v3, vl1l, v2

@

@

I

Y

[0] [1] [VLR-1]
\ /
/Vector Load and Store Vector Reg/ster \
Instructions
vlid Vl%///
q M
\_ Base x1 Strlde x2 =mory -

CS252, Spring 2015, Lecture 9

© Krste Asanovic, 2015



Vector Code Example

# Vector Code
# C code .
for (i=0; i<64; i++) | ¥ i?alzr gzde izt"; 6:
: : : i x4, v X
Clal = Afi] + BI2]; loop: vEfld vl1l, x1
£f1d £f1, 0(x1) vfld v2, x2
£1d £2, 0(x2) vfadd.d v3,vl1l,v2
fadd.d £3,f1,£f2 vEsd v3, x3
fsd £3, 0(x3)
addi x1, 8
addi x2, 8
addi x3, 8
subi x4, 1
bnez x4, loop

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015



Cray-1 (1976)

Single Port
Memory

16 banks of 64-

bit words
+

8-bit SECDED

80MW/sec data
load/store

320MW/sec

instruction
buffer refill

memory bank cycle 50 ns

CS252, Spring 2015, Lecture 9

4 |nstruction Buffers

© Krste Asanovic, 2015

processor cycle 12.5 ns (80MHz)

z(; - V. Mask
) 64 FEtement-Vector x; J V. Length
- |—Registers A Vi
g Vs
V6
V7 | FP Add
S0 S. > FP Mul
((A)+ikm) s1 J
= > 2 Sy FP Recip
S, s3
(Ay) 64 g m— S
. 0 > T Re . L Tjk o < i Int Add
8s | - *| Int Logic
Int Shift
AQ
((A)+jkm) Al Pop Cnt
s > A2 A
A. A3 i >
(A,) 64 — Al A, Addr Add
< > B. AS >
B Regs |+—L& Y A Addr Mul
A7
— ‘ R
2= 64-bitx16 [{=7 LNIP <P
> LIP




Vector Instruction Set Advantages

= Compact
— one short instruction encodes N operations

= Expressive, tells hardware that these N operations:
— are independent
— use the same functional unit
— access disjoint registers
— access registers in same pattern as previous instructions
— access a contiguous block of memory
(unit-stride load/store)
— access memory in a known pattern
(strided load/store)

= Scalable
— can run same code on more parallel pipelines (lanes)

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015



Vector Arithmetic Execution

e Use deep pipeline (=> fast clock) to v llv Iy
execute element operations 19 3
e Simplifies control of deep pipeline
because elements in vector are i
independent (=> no hazards!) | Z
L[
Ll
. =
Six-stage multiply pipeline 7|
e

v3<-vl *v2

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015



Vector Instruction Execution

Execution using
one pipelined
functional unit

Al6]  B[6]
A[S]  BI[5]
Al4]  B[4]
A[3] B3]

S
\ /

\ <

ool

\ <

|

\ <

=

C[O]

CS252, Spring 2015, Lecture 9

vfadd.d vc, va, vb

Execution using
four pipelined
functional units

A[24] B[24] A[25] B[25]
A[20] B[20] A[21] B[21]
A[16] B[16] A[17] B[17]
A[12] B[12] A[13] B[13]

S S
\ | /

\ C[8] f \ C[9]

[

e | las ]

A[26] B[26] A[27] B[27]
A[22] B[22] A[23] B[23]
A[18] B[18] A[19] B[19]
A[14] B[14] A[15] B[15]
v v
i Vo S i Vo
\C[lo] / \C[ll] /

sl |

|

A T

C[3]

C[O] C[1]

© Krste Asanovic, 2015

C[2]

10



Interleaved Vector Memory System

= Bank busy time: Time before bank ready to accept next
request
= Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency

Base Stride
Vector Registers l
| F F
Address il
Generator +
.

0/1/123|4|5|6|7|8|9|A|B|C|D|E|F

Memory Banks

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015 1 1



Vector

Registers
~

Vector Unit Structure
)y Functional Unit

Lane

(( [ < [ < [ < \
| / \¢ | / \¢ ‘ / \<F
[ \ [ \ [ \ W,
Elements Elements Elements Elements
0,438, .. 1,5,9, .. 2,6, 10, .. 3,7,11, ...
‘\ A\ 4 V</F ‘\ A\ 4 V</F \ A\ 4 A\ 4 / ‘\ A\ 4 V</F
L[ L[ L[
AT AT AT

i) T T
Memory Subsystem

CS252, Spring 2015, Lecture 9

© Krste Asanovic, 2015

12



TO Vector Microprocessor (UCB/ICSI, 1995)

[FESRNRS N dhad LA il

} Y
i oA
|

Vector register g 8 &
elements striped & BE B
over lanes i

-op = [§r e

i I' Fy 1 T \
€| i3
%r i; i 4 ;1 Ei
" gt h }
i%ﬁ : i b i
L83 . , [ES
R i | , H
g : £ L
& ¢ £
! i iz

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015

: vt e (T s | & TR “.‘.':' 1 e
TURE PR '\;iff‘?“fg"&f!“‘?‘- I AT

Abbbdddababds
&
| o ] F
§ il
- - -4
¥
>
.
4
.
*
3

= Lane

&)

bosshainisd

Labadnl

AR -
oy

13



Vector Instruction Parallelism

= Can overlap execution of multiple vector instructions
— example machine has 32 elements per vector register and 8 lanes

l Load Unit Multiply Unit Add Unit

®© o0 oo
@ o000 AA A A A AL

time IO, NN EEES OO0O0O000C

ooooo AAAaAAallmmmmnnnE

O|0]0]|0|0 AAAAAAAAINEEEEEENE

0|0]|0]|0|0 AAAAA4ANEEEEENENENRE

0|0]|0]|0|0 Alajalalalledd /e(ee/eE/n[E =

00000 AlAlalalalaallmmmmnnnE

AAAAAAAA|EEENENEENRE

Instruction LIl

issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015 1 4



= \Vector version of register bypassing

Vector Chaining

— introduced with Cray-1

vid vl
vifmul v3,vl,v2
Vfadd v5 ,\‘v3, v4

V1

Load
Unit

Memory

CS252, Spring 2015, Lecture 9

Chain

V2

V3

Mult.

© Krste Asanovic, 2015

Chain

V4

V5

Add

15



Vector Chaining Advantage

e Without chaining, must wait for last element of result to be
written before starting dependent instruction

Time ’ Adag

e With chaining, can start dependent instruction as soon as first
result appears

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015

16



Vector Startup

= Two components of vector startup penalty
— functional unit latency (time through pipeline)
— dead time or recovery time (time before another vector
instruction can start down pipeline)
Functional Unit Latency

< L

RIX|X|X|W

RIX X | X |W First Vector|Instruction
RIX X | X |W !
Dead|Time
. Dead Time R RIX IX [x |w Second Vec[orlnstruction
RIX X | X |[W

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015 1 7



le®
o @

I‘

—

CS252, Spring 2015, Lecture 9

Dead Time and Short Vectors

No dead time

4 cycles dead time

64 cycles active

Cray C90, Two lanes
4 cycle dead time

Maximum efficiency 94%
with 128 element vectors

© Krste Asanovic, 2015

T0, Eight lanes

No dead time

100% efficiency with 8 element

vectors

18



Vector Memory-Memory versus Vector

Register Machines

= Vector memory-memory instructions hold all vector operands
in main memory

= The first vector machines, CDC Star-100 (‘73) and TI ASC (‘71),
were memory-memory machines
= Cray-1 ("76) was first vector register machine

Vector Memory-Memory Code

Example Source Code ADDV C, A, B
for (i=0; i<N; i++) SUBV D, A, B
{

C[i] = A[i] + B[i]; Vector Register Code
D[i]

A[i] - B[1i]; LV V1, A
} LV V2, B
ADDV V3, V1, V2
Sv v3, C
SUBV V4, V1, V2
SV Vv4, D

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015



Vector Memory-Memory vs. Vector

Register Machines
= Vector memory-memory architectures (VMMA) require

greater main memory bandwidth, why?
— All operands must be read in and out of memory

= VMMAs make if difficult to overlap execution of multiple

vector operations, why?
— Must check dependencies on memory addresses

= VMMA:s incur greater startup latency
— Scalar code was faster on CDC Star-100 for vectors < 100 elements
— For Cray-1, vector/scalar breakeven point was around 2-4 elements

= Apart from CDC follow-ons (Cyber-205, ETA-10) all major
vector machines since Cray-1 have had vector register
architectures

= (we ignore vector memory-memory from now on)

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015

20



Automatic Code Vectorization
for (i=0; i < N; i++)
C[i] = A[i] + BI[i];

Scalar Sequential Code Vectorized Code
lter. 1:
: Q
S
~
v
lter 2 Vector Instruction

Mlectorization is a massive compile-time reordering
of operation sequencing
=> requires extensive loop dependence analysis

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015 2 1



Vector Stripmining

Problem: Vector registers have finite length
Solution: Break loops into pieces that fit in registers, “Stripmining”

for (i=0; i<N; i++)
Cl[i] = A[i]+B[i];
A B G

}Remainder

~

L —1

g ¢

>64 elements

[

CS252, Spring 2015, Lecture 9

andi x1, xN, 63 # N mod 64
setvlr x1 # Do remainder
loop:

vld v1l, xA

sll x2, x1, 3 # Multiply by 8
add xA, x2 # Bump pointer
vld v2, xB

add xB, x2

vfadd.d v3, vl1, v2

vsd v3, xC

add xC, x2

sub xN, x1 # Subtract elements
1i x1, 64

setvlr x1 # Reset full length

bgtz xN, loop # Any more to do-?

© Krste Asanovic, 2015

22



Vector Conditional Execution

Problem: Want to vectorize loops with conditional code:
for (i=0; i<N; i++)
if (A[i]>0) then
A[i] = B[i];

Solution: Add vector mask (or flag) registers
— vector version of predicate registers, 1 bit per element
...and maskable vector instructions

— vector operation becomes bubble (“NOP”) at elements
where mask bit is clear

Code example:

cvm # Turn on all elements

vld vA, xA # Load entire A vector

vEsgts.d vA, £f0 # Set bits in mask register where A>0
vld vA, xB # Load B vector into A under mask
vsd vA, xA # Store A back to memory under mask

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015



Simple Implementation

Masked Vector Instructions

Density-Time Implementation

— execute all N operations, turn off result — scan mask vector and only execute

writeback according to mask

M[7]=1
M[6]=0
M[5]=1
M[4]=1
M[3]=0

M[2]=0
M[1]=1

A[7] B[7]

A[6] B[6]

A[5] B[5]

A[4] B[4]

A[3] B[3]
v v

‘\ 4
| 2l

<

M[0]=0 _l C[O0]

Write Enable

CS252, Spring 2015, Lecture 9

Write data port

elements with non-zero masks

M[7]=1
MEl=0 AL7] B[7]

M[5]=1

\ ¢
M[4]=1 ¢
M[3]= o\ C[5]

M[2]=0 | CI4] /¢

M[1]=1 — —

C[1]
Write data port

24

© Krste Asanovic, 2015



Compress/Expand Operations

= Compress packs non-masked elements from one vector register contiguously at
start of destination vector register
— population count of mask vector gives packed vector length
= Expand performs inverse operation

M[7]=1 | —> A[7] (A[7] | +TM[7]=1
M[6]=0 Al6] B[6] M[6]=0
M[5]=1 | — A[5] ( A[5] | T MI[5]=1
M[4]=1 | — A[4] ( A[4] | +TM[4]=1
M[3]=0 A[3] v A[7] B[3] M[3]=0
M[2]=0 A[2] 'A[5] B[2] M[2]=0
M[1]=1 | — A[1] 'Al4] A[1] | + T M[1]=1
M[0]=0 A[0] \‘ A[1] / B[O] M[0]=0

Compress Expand

Used for density-time conditionals and also for general
selection operations

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015



Vector Reductions

Problem: Loop-carried dependence on reduction variables
sum = O;
for (i=0; i<N; i++)
sum += A[i]; # Loop-carried dependence on sum
Solution: Re-associate operations if possible, use binary tree to perform reduction
# Rearrange as:
sum[0:VL-1] = 0 # Vector of VL partial sums
for (i=0; i<N; i+=VL) # Stripmine VL-sized chunks
sum[0:VL-1] += A[i:i+VL-1]; # Vector sum
# Now have VL partial sums in one vector register
do {
VL = VL/2; # Halve vector length
sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials
} while (VL>1)

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015



Vector Scatter/Gather

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
A[i] = B[i] + C[D[il]]

Indexed load instruction (Gather)

vld vD, xD # Load indices in D vector
vdli vC, xC, vD # Load indirect from rC base
vld vB, xB # Load B vector

vfadd.d vA,vB,vC # Do add

vsd vA, xA # Store result

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015

27



Vector Scatter/Gather

Histogram example:
for (i=0; i<N; i++)
A[B[i]]++;

Is following a correct translation?

vld vB, xB # Load indices in B vector
vldi vA, xA, vB # Gather initial A values
vadd vA, vA, 1 # Increment

vsdi vA, xA, vB # Scatter incremented values

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015

28



Vector Memory Models

= Most vector machines have a very relaxed memory model, e.g.
vsd v1, x1 # Store vector to x1

vld v2, x1 # Load vector from x1

— No guarantee that elements of v2 will have value of elements of vl even when store and
load execute by same processor!

= Requires explicit memory barrier or fence
vsd v1, x1 # Store vector to x1
fence.vs.vl # Enforce ordering s->1
vld v2, x1 # Load vector from x1

Vector machines support highly parallel memory systems (multiple lanes and

multiple load and store units) with long latency (100+ clock cycles)
— hardware coherence checks would be prohibitively expensive
— vectorizing compiler can eliminate most dependencies

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015



8-Way Vector Mask Req. |<+>(  Mask

Unit <> Logical
<> Multiply ()
( Load or <J>( Multiply (}
Store Vector Reg. | 1&(  Add. ()
<> _Add. ()
<> Div/Sqrt. ()

-+
I

ad Mult./Add.
Cache |e—sl ScalarReg. | cymmmermmy
Scalar ——x
Unit AU ()
( au |

[ ONEC |

A Recent Vector Super: NEC SX-9 (2008)

= 65nm CMOS technology

= Vector unit (3.2 GHz)
— 8 foreground VRegs + 64 background
VRegs (256x64-bit elements/VReg)
— 64-bit functional units: 2 multiply, 2 add,
1 divide/sqrt, 1 logical, 1 mask unit
— 8 lanes (32+ FLOPS/cycle, 100+ GFLOPS
peak per CPU)
— 1 load or store unit (8 x 8-byte accesses/
cycle)
= Scalar unit (1.6 GHz)
— 4-way superscalar with out-of-order and
speculative execution
— 64KB I-cache and 64KB data cache

e Memory system provides 256GB/s DRAM bandwidth per CPU

e Up to 16 CPUs and up to 1TB DRAM form shared-memory node
— total of 4TB/s bandwidth to shared DRAM memory

e Up to 512 nodes connected via 128GB/s network links (message passing
between nodes)

[ New announcement SX-ACE, 4x16-lane vector CPUs on one chipl30

© Krste Asanovic, 2015

CS252, Spring 2015, Lecture 9



Acknowledgements

= This course is partly inspired by previous MIT 6.823
and Berkeley CS252 computer architecture courses

created by my collaborators and colleagues:
— Arvind (MIT)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)

CS252, Spring 2015, Lecture 9 © Krste Asanovic, 2015

31



