CS252 Graduate Computer Architecture
Spring 2014
Lecture 8: Advanced Out-of-Order
Superscalar Designs Part-II

Krste Asanovic
krste@eecs.berkeley.edu
http://inst.eecs.berkeley.edu/~cs252/falb

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

Last Time in Lecture 7

= Unified Physical Register Design for OoO superscalar
= Branch History Table Branch Predictors

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

Limitations of BHTs

Only predicts branch direction. Therefore, cannot redirect fetch stream until
after branch target is determined.

Correctly predicted A | PC Generation/Mux

taken branch
penalty

Instruction Fetch Stage 1

P
F | Instruction Fetch Stage 2
B | Branch Address Calc/Begin Decode

| | Complete Decode

Jump Register

J | Steer Instructions to Functional units
penalty R
E

Register File Read

Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-III fetch pipeline

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

I-Cache

Branch Target Buffer (BTB)
2k-entry direct-mapped BTB

PC

(can also be assoc

- EntryPC—

\alid

iative)

| predicted-

taracotr PC
\-ulb\—\- L} N

match

valid

e Keep both the branch PC and target PCin the BTB
e PC+4 is fetched if match fails

e Only taken branches and jumps held in BTB
e Next PC determined before branch fetched and decoded

CS252, Fall 2015, Lecture 8

© Krste Asanovic, 2015

target

Combining BTB and BHT

= BTB entries are considerably more expensive than BHT, but
can redirect fetches at earlier stage in pipeline and can
accelerate indirect branches (JR)

= BHT can hold many more entries and is more accurate

A | PC Generation/Mux

BTB | | P | Instruction Fetch Stage 1
F
B

Instruction Fetch Stage 2

BHT in later & BHT
pipeline stage
corrects when

Branch Address Calc/Begin Decode

| | Complete Decode

BTB misses a J | Steer Instructions to Functional units
predicted taken R | Register File Read
branch

E

/ Integer Execute

BTB/BHT only updated after branch resolves in E stage

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

Uses of Jump Register (JR)

= Switch statements (jump to address of matching
case)

BTB works well if same case used repeatedly

= Dynamic function call (jump to run-time function

address)
BTB works well if same function usually called, (e.g., in C+
+ programming, when objects have same type in virtual
function call)

= Subroutine returns (jump to return address)
BTB works well if usually return to the same place

=> Often one function called from many distinct call sites!
How well does BTB work for each of these cases?

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

Subroutine Return Stack

Small structure to accelerate JR for subroutine returns,

typically much more accurate than BTBs.
fa() { £b(); }
fb() { fc(); }
fc() { £d4(); }

Pop return address when

Push call address when
function call executed/\ m subroutine return decoded

&£d () k entries
&fc () (typically k=8-16)

&fb ()

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

Return Stack in Pipeline

= How to use return stack (RS) in deep fetch pipeline?
= Only know if subroutine call/return at decode

RS Push/Pop IS@

RS

@ |TM|O|>

decode gives
large bubble in
fetch stream.

/

J
R
E

PC Generation/Mux

Instruction Fetch Stage 1

Instruction Fetch Stage 2

Branch Address Calc/Begin Decode
Complete Decode

Steer Instructions to Functional units
Register File Read

Integer Execute

Return Stack prediction checked

CS252, Fall 2015, Lecture 8

© Krste Asanovic, 2015

Return Stack in Pipeline

= Can remember whether PC is subroutine call/return
using BTB-like structure
= Instead of target-PC, just store push/pop bit

C [ms

Push/Pop before
instructions decoded!

A | PC Generation/Mux

P | Instruction Fetch Stage 1
F

B

Instruction Fetch Stage 2

Branch Address Calc/Begin Decode

| | Complete Decode

Steer Instructions to Functional units

J
R | Register File Read
E

/ Integer Execute

Return Stack prediction checked

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

In-Order vs. Out-of-Order Branch Prediction

In-Order <

= Speculative fetch but not speculative
execution - branch resolves before

.

In-Order Issue

Fetch

Br. Pred.

v

Decode

v

Execute

A

v

Commit

later instructions complete

= Completed values held in bypass

network until commit

Resolve

In-Order

In-Order —

Out-of-Order Issue

Fetch

Br. Pred.

v

Decode

v

A

Resolve

ROB

v

f

Execute

} Out-of-Order

v

Commit

= Speculative execution, with branches

resolved after later instructions complete
= Completed values held in rename

registers in ROB or unified physical

register file until commit

e Both styles of machine can use same branch predictors in front-end fetch pipeline,
and both can execute multiple instructions per cycle

e Common to have 10-30 pipeline stages in either style of design

CS252, Fall 2015, Lecture 8

© Krste Asanovic, 2015

10

InO vs. 000 Mispredict Recovery

= In-order execution?
— Design so no instruction issued after branch can write-back
before branch resolves
— Kill all instructions in pipeline behind mispredicted branch

= Qut-of-order execution?
— Multiple instructions following branch in program order
can complete before branch resolves

— A simple solution would be to handle like precise traps
— Problem?

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015 1 1

Branch Misprediction in Pipeline
nject correct PC

Branch ill Branch :
Resolutio

Prediction
Kill Kill

Pd— Fetch " Decode [Reorder Buffer)—» Commit

l ‘ Complete

Execute

= Can have multiple unresolved branches in ROB

= Can resolve branches out-of-order by killing all the instructions in
ROB that follow a mispredicted branch

= MIPS R10K uses four mask bits to tag instructions that are
dependent on up to four speculative branches

= Mask bits cleared as branch resolves, and reused for next branch

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015 1 2

Rename Table Recovery

= Have to quickly recover rename table on branch
mispredicts

= MIPS R10K only has four snapshots for each of four
outstanding speculative branches

= Alpha 21264 has 80 snapshots, one per ROB
Instruction

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015 1 3

Improving Instruction Fetch

= Performance of speculative out-of-order machines

often limited by instruction fetch bandwidth
— speculative execution can fetch 2-3x more instructions
than are committed
— mispredict penalties dominated by time to refill instruction
window
— taken branches are particularly troublesome

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

Increasing Taken Branch Bandwidth
(Alpha 21264 I-Cache)

»| PC Generation

«—— Branch Prediction
«—— |nstruction Decode
«— Validity Checks

PC

CS252, Fall 2015, Lecture 8

© Krste Asanovic, 2015

Fold 2-way tags and BTB into predicted next block
Take tag checks, inst. decode, branch predict out of loop
Raw RAM speed on critical loop (1 cycle at ~1 GHz)
2-bit hysteresis counter per block prevents overtraining

:iﬂ' Line Way Cached 1\;\7ag 1\;\7ag
Predict Predict | Instructions 0 Y 1 Y
| | 4insts/1/
fast fetch path
=7 =7

Hit/Miss/Way

Tournament Branch Predictor
(Alpha 21264)

= Choice predictor learns whether best to use local or global
branch history in predicting next branch

= Global history is speculatively updated but restored on
mispredict

= Claim 90-100% success on range of applications

Global Prediction

Local Local
history table »| prediction
(1,024x10b) (1,024x3b)

(4,096x2b)

Choice Prediction

PC * *
\ Z (4,096x2b)

Prediction * Global History (12b)

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

Taken Branch Limit

* Integer codes have a taken branch every 6-9
instructions
= To avoid fetch bottleneck, must execute multiple
taken branches per cycle when increasing
performance
* This implies:
— predicting multiple branches per cycle
— fetching multiple non-contiguous blocks per cycle

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

Branch Address Cache
(Yeh, Marr, Patt)

Entry PC Valid predicted en predicted
target #1 target #2
—) ° ° ® °
° ° ° ° ® (N
° °) i °
° °) o °
Tk
PC
J =

match valid target#l len#l target#2

Extend BTB to return multiple branch predictions per cycle

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

Fetching Multiple Basic Blocks

= Requires either
— multiported cache: expensive
— interleaving: bank conflicts will occur

= Merging multiple blocks to feed to decoders adds
latency increasing mispredict penalty and reducing
branch throughput

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

Trace Cache

= Key Idea: Pack multiple non-contiguous basic blocks
into one contiguous trace cache line

Nl

BR BR BR

e Single fetch brings in multiple basic blocks

e Trace cache indexed by start address and next n branch
predictions

e Used in Intel Pentium-4 processor to hold decoded uops

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

Load-Store Queue Design

= After control hazards, data hazards through memory
are probably next most important bottleneck to
superscalar performance

= Modern superscalars use very sophisticated load-
store reordering techniques to reduce effective
memory latency by allowing loads to be speculatively
issued

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

21

Speculative Store Buffer

Address Data
Speculative
Store Buffer
VIS Tag Data
VIS Tag Data
VIS Tag Data
VIS Tag Data
VIS Tag Data
VIS Tag Data
Store Commit
Path
Tags Data

L1 Data Cache

CS252, Fall 2015, Lecture 8

Just like register updates, stores should
not modify the memory until after the
instruction is committed. A speculative
store buffer is a structure introduced to
hold speculative store data.
During decode, store buffer slot allocated
in program order
Stores split into “store address” and
“store data” micro-operations
“Store address” execution writes tag
“Store data” execution writes data
Store commits when oldest instruction
and both address and data available:

— clear speculative bit and eventually

move data to cache

On store abort:

— clear valid bit

© Krste Asanovic, 2015 22

Load bypass from speculative store

buffer
Speculative Load Address
[
Store Buffer L1 Data Cache
VIS Tag Data
VIS Tag Data
VIS Tag Data
VIS Tag Data Tags Data
VIS Tag Data
VIS Tag Data

! Load Data

\ 4

= |f data in both store buffer and cache, which should we use?
Speculative store buffer

= |f same address in store buffer twice, which should we use?
Youngest store older than load

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015 23

Memory Dependencies

sd x1, (x2)
1d x3, (x4)

= When can we execute the load?

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

24

In-Order Memory Queue

= Execute all loads and stores in program order
= => Load and store cannot leave ROB for execution
until all previous loads and stores have completed

execution

= Can still execute loads and stores speculatively, and
out-of-order with respect to other instructions

» Need a structure to handle memory ordering...

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

25

Conservative 0-0-0O Load Execution

sd x1, (x2)
1d x3, (x4)

= Can execute load before store, if addresses known
and x4 1= x2
= Each load address compared with addresses of all

previous uncommitted stores
— canh use partial conservative check i.e., bottom 12 bits of
address, to save hardware

= Don’t execute load if any previous store address not
known
= (MIPS R10K, 16-entry address queue)

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

26

Address Speculation

sd x1, (x2)
1d x3, (x4)

= Guess that x4 1= x2

» Execute load before store address known

= Need to hold all completed but uncommitted load/
store addresses in program order

= |f subsequently find x4==x2, squash load and all
following instructions

= =>large penalty for inaccurate address speculation

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

27

Memory Dependence Prediction
(Alpha 21264)

sd x1, (x2)
1d x3, (x4)

» Guess that x4 = x2 and execute load before store

= |f [ater find x4==x2, squash load and all following
instructions, but mark load instruction as store-wait

= Subsequent executions of the same load instruction
will wait for all previous stores to complete

» Periodically clear store-wait bits

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

28

Acknowledgements

= This course is partly inspired by previous MIT 6.823
and Berkeley CS252 computer architecture courses

created by my collaborators and colleagues:
— Arvind (MIT)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)

CS252, Fall 2015, Lecture 8 © Krste Asanovic, 2015

29

