# CS252 Graduate Computer Architecture Spring 2014 Lecture 7: Advanced Out-of-Order Superscalar Designs

Krste Asanovic

krste@eecs.berkeley.edu

http://inst.eecs.berkeley.edu/~cs252/fa15



#### **Last Time in Lecture 6**

Modern Out-of-Order Architectures with Precise Traps

Data-in-ROB design

## Data Movement in Data-in-ROB Design



# **Unified Physical Register File**

(MIPS R10K, Alpha 21264, Intel Pentium 4 & Sandy/Ivy Bridge)

- Rename all architectural registers into a single physical register file during decode, no register values read
- Functional units read and write from single unified register file holding committed and temporary registers in execute
- Commit only updates mapping of architectural register to physical register, no data movement



# **Lifetime of Physical Registers**

- Physical regfile holds committed and speculative values
- Physical registers decoupled from ROB entries (no data in ROB)



When can we reuse a physical register?

When next writer of same architectural register commits







Id x1, 0(x3) addi x3, x1, #4 sub x6, x7, x6 add x3, x3, x6 Id x6, 0(x1)

**ROB** 

| use | ex | ор | p1 | PR1 | p2 | PR2 | Rd | LPRd | PRd |
|-----|----|----|----|-----|----|-----|----|------|-----|
|     |    |    |    |     |    |     |    |      |     |
|     |    |    |    |     |    |     |    |      |     |
|     |    |    |    |     |    |     |    |      |     |
|     |    |    |    |     |    |     |    |      |     |
|     |    |    |    |     |    |     |    |      |     |
|     |    |    |    |     |    |     |    |      |     |
|     |    |    |    |     |    |     |    |      |     |

(LPRd requires third read port on Rename Table for each instruction)















# **MIPS R10K Trap Handling**

- Rename table is repaired by unrenaming instructions in reverse order using the PRd/LPRd fields
- The Alpha 21264 had similar physical register file scheme, but kept complete rename table snapshots for each instruction in ROB (80 snapshots total)
  - Flash copy all bits from snapshot to active table in one cycle

# Reorder Buffer Holds Active Instructions (Decoded but not Committed)



Cycle t Cycle t + 1

# **Separate Issue Window from ROB**

The issue window holds only instructions that have been decoded and renamed but not issued into execution. Has register tags and presence bits, and pointer to ROB entry.

| use | ex | ор | р1 | PR1 | p2 | PR2 | PRd | ROB# |
|-----|----|----|----|-----|----|-----|-----|------|
|     |    |    |    |     |    |     |     |      |
|     |    |    |    |     |    |     |     |      |
|     |    |    |    |     |    |     |     |      |
|     |    |    |    |     |    |     |     |      |

Reorder buffer used to hold exception information for commit.

Done? Rd LPRd PC Except?

ROB is usually several times larger than issue window – why?

# **Superscalar Register Renaming**

- During decode, instructions allocated new physical destination register
- Source operands renamed to physical register with newest value
- Execution unit only sees physical register numbers



Does this work?

# **Superscalar Register Renaming**



MIPS R10K renames 4 serially-RAW-dependent insts/cycle

# **Control Flow Penalty**

Modern processors may have > 10 pipeline stages between next PC calculation and branch resolution!

How much work is lost if pipeline doesn't follow correct instruction flow?

~ Loop length x pipeline width + buffers



# **Reducing Control Flow Penalty**

#### Software solutions

- Eliminate branches loop unrolling
  - Increases the run length
- Reduce resolution time instruction scheduling
  - Compute the branch condition as early as possible (of limited value because branches often in critical path through code)

#### Hardware solutions

- Find something else to do delay slots
  - Replaces pipeline bubbles with useful work (requires software cooperation) – quickly see diminishing returns
- Speculate branch prediction
  - Speculative execution of instructions beyond the branch
  - Many advances in accuracy

#### **Branch Prediction**

#### **Motivation:**

Branch penalties limit performance of deeply pipelined processors

Modern branch predictors have high accuracy (>95%) and can reduce branch penalties significantly

#### Required hardware support:

#### **Prediction structures:**

Branch history tables, branch target buffers, etc.

#### Mispredict recovery mechanisms:

- Keep result computation separate from commit
- Kill instructions following branch in pipeline
- Restore state to that following branch

# **Importance of Branch Prediction**

- Consider 4-way superscalar with 8 pipeline stages from fetch to dispatch, and 80-entry ROB, and 3 cycles from issue to branch resolution
- On a mispredict, could throw away 8\*4+(80-1)=111 instructions
- Improving from 90% to 95% prediction accuracy, removes 50% of branch mispredicts
  - If 1/6 instructions are branches, then move from 60 instructions between mispredicts, to 120 instructions between mispredicts

#### **Static Branch Prediction**

Overall probability a branch is taken is ~60-70% but:



ISA can attach preferred direction semantics to branches, e.g., Motorola MC88110

bne0 (preferred taken) beq0 (not taken)

ISA can allow arbitrary choice of statically predicted direction, e.g., HP PA-RISC, Intel IA-64 typically reported as ~80% accurate

# Dynamic Branch Prediction learning based on past behavior

# Temporal correlation

 The way a branch resolves may be a good predictor of the way it will resolve at the next execution

# Spatial correlation

 Several branches may resolve in a highly correlated manner (a preferred path of execution)

# **One-Bit Branch History Predictor**

- For each branch, remember last way branch went
- Has problem with loop-closing backward branches, as two mispredicts occur on every loop execution
  - 1. first iteration predicts loop backwards branch not-taken (loop was exited last time)
  - 2. last iteration predicts loop backwards branch taken (loop continued last time)

#### **Branch Prediction Bits**

- Assume 2 BP bits per instruction
- Change the prediction after two consecutive mistakes!



BP state:

(predict take/¬take) x (last prediction right/wrong)

# **Branch History Table (BHT)**



4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

## **Exploiting Spatial Correlation**

Yeh and Patt, 1992

If first condition false, second condition also false

History register, H, records the direction of the last N branches executed by the processor

#### **Two-Level Branch Predictor**

Pentium Pro uses the result from the last two branches to select one of the four sets of BHT bits (~95% correct)



# **Speculating Both Directions**

- An alternative to branch prediction is to execute both directions of a branch speculatively
  - resource requirement is proportional to the number of concurrent speculative executions
  - only half the resources engage in useful work when both directions of a branch are executed speculatively
  - branch prediction takes less resources than speculative execution of both paths
- With accurate branch prediction, it is more cost effective to dedicate all resources to the predicted direction!

#### **Limitations of BHTs**

Only predicts branch direction. Therefore, cannot redirect fetch stream until after branch target is determined.



UltraSPARC-III fetch pipeline

# **Branch Target Buffer (BTB)**



- Keep both the branch PC and target PC in the BTB
- PC+4 is fetched if match fails
- Only taken branches and jumps held in BTB
- Next PC determined before branch fetched and decoded

# **Combining BTB and BHT**

- BTB entries are considerably more expensive than BHT, but can redirect fetches at earlier stage in pipeline and can accelerate indirect branches (JR)
- BHT can hold many more entries and is more accurate



BTB/BHT only updated after branch resolves in E stage

# **Uses of Jump Register (JR)**

Switch statements (jump to address of matching case)

BTB works well if same case used repeatedly

Dynamic function call (jump to run-time function address)

BTB works well if same function usually called, (e.g., in C+ + programming, when objects have same type in virtual function call)

Subroutine returns (jump to return address)
 BTB works well if usually return to the same place
 ⇒ Often one function called from many distinct call sites!
 How well does BTB work for each of these cases?

#### **Subroutine Return Stack**

Small structure to accelerate JR for subroutine returns, typically much more accurate than BTBs.

```
fa() { fb(); }
fb() { fc(); }
fc() { fd(); }
```



# **Return Stack in Pipeline**

- How to use return stack (RS) in deep fetch pipeline?
- Only know if subroutine call/return at decode



### **Return Stack in Pipeline**

- Can remember whether PC is subroutine call/return using BTB-like structure
- Instead of target-PC, just store push/pop bit



Return Stack prediction checked

### In-Order vs. Out-of-Order Branch Prediction



- Speculative fetch but not speculative execution - branch resolves before later instructions complete
- Completed values held in bypass network until commit

- Speculative execution, with branches resolved after later instructions complete
- Completed values held in rename registers in ROB or unified physical register file until commit
- Both styles of machine can use same branch predictors in front-end fetch pipeline, and both can execute multiple instructions per cycle
- Common to have 10-30 pipeline stages in either style of design

### InO vs. OoO Mispredict Recovery

- In-order execution?
  - Design so no instruction issued after branch can write-back before branch resolves
  - Kill all instructions in pipeline behind mispredicted branch
- Out-of-order execution?
  - Multiple instructions following branch in program order can complete before branch resolves
  - A simple solution would be to handle like precise traps
    - Problem?

### **Branch Misprediction in Pipeline**



- Can have multiple unresolved branches in ROB
- Can resolve branches out-of-order by killing all the instructions in ROB that follow a mispredicted branch
- MIPS R10K uses four mask bits to tag instructions that are dependent on up to four speculative branches
- Mask bits cleared as branch resolves, and reused for next branch

40

### **Rename Table Recovery**

- Have to quickly recover rename table on branch mispredicts
- MIPS R10K only has four snapshots for each of four outstanding speculative branches
- Alpha 21264 has 80 snapshots, one per ROB instruction

### **Load-Store Queue Design**

- After control hazards, data hazards through memory are probably next most important bottleneck to superscalar performance
- Modern superscalars use very sophisticated loadstore reordering techniques to reduce effective memory latency by allowing loads to be speculatively issued

### **Speculative Store Buffer**



- Just like register updates, stores should not modify the memory until after the instruction is committed. A speculative store buffer is a structure introduced to hold speculative store data.
- During decode, store buffer slot allocated in program order
- Stores split into "store address" and "store data" micro-operations
- "Store address" execution writes tag
- "Store data" execution writes data
- Store commits when oldest instruction and both address and data available:
  - clear speculative bit and eventually move data to cache
- On store abort:
  - clear valid bit

# Load bypass from speculative store buffer



- If data in both store buffer and cache, which should we use?
   Speculative store buffer
- If same address in store buffer twice, which should we use?
   Youngest store older than load

## **Memory Dependencies**

• When can we execute the load?

## **In-Order Memory Queue**

- Execute all loads and stores in program order
- => Load and store cannot leave ROB for execution until all previous loads and stores have completed execution
- Can still execute loads and stores speculatively, and out-of-order with respect to other instructions
- Need a structure to handle memory ordering...

### **Conservative O-o-O Load Execution**

- Can execute load before store, if addresses known and x4!=x2
- Each load address compared with addresses of all previous uncommitted stores
  - can use partial conservative check i.e., bottom 12 bits of address, to save hardware
- Don't execute load if any previous store address not known
- (MIPS R10K, 16-entry address queue)

### **Address Speculation**

```
sd x1, (x2)
ld x3, (x4)
```

- Guess that x4 != x2
- Execute load before store address known
- Need to hold all completed but uncommitted load/ store addresses in program order
- If subsequently find x4==x2, squash load and all following instructions
- => Large penalty for inaccurate address speculation

# Memory Dependence Prediction (Alpha 21264)

- Guess that x4 != x2 and execute load before store
- If later find x4==x2, squash load and all following instructions, but mark load instruction as store-wait
- Subsequent executions of the same load instruction will wait for all previous stores to complete
- Periodically clear store-wait bits

### **Acknowledgements**

- This course is partly inspired by previous MIT 6.823 and Berkeley CS252 computer architecture courses created by my collaborators and colleagues:
  - Arvind (MIT)
  - Joel Emer (Intel/MIT)
  - James Hoe (CMU)
  - John Kubiatowicz (UCB)
  - David Patterson (UCB)