CS252 Graduate Computer Architecture
Spring 2014
Lecture 7: Advanced Out-of-Order
Superscalar Designs

Krste Asanovic
krste@eecs.berkeley.edu
http://inst.eecs.berkeley.edu/~cs252/falb

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

Last Time in Lecture 6

Modern Out-of-Order Architectures with Precise Traps
= Data-in-ROB design

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

Data Movement in Data-in-ROB Design

Architectural Register Write results at

File commit
Rea.d operands Read results for
during decode .
commit
Write sources v v *
s \ 4
in dispatch i R w— Bypass newer
¥ ¥ values at dispatch
Source Result
ROB Operands Data
A
Read 7 Write results at
operands at v v completion
issue

Functional Units

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

Unified Physical Register File

(MIPS R10K, Alpha 21264, Intel Pentium 4 & Sandy/Ivy Bridge)

= Rename all architectural registers into a single physical register
file during decode, no register values read

= Functional units read and write from single unified register file
holding committed and temporary registers in execute

= Commit only updates mapping of architectural register to
physical register, no data movement

Decode Stage Committed

Regist'er T Unified Physical e Register
Mapping Register File Mapping

A

Read operands at issue Werite results at completion

A 4 A 4

Functional Units

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

Lifetime of Physical Registers

® Physical regfile holds committed and speculative values
e Physical registers decoupled from ROB entries (no data in ROB)

1d x1, (x3) 1d Pl, (Px)
addi x3, x1, #4 addi P2, P1l, #4
sub x6, x7, x9 sub P3, Py, Pz
add x3, x3, x6 add P4, P2, P3
1d x6, (x1) Rename 1d P5, (P1)
add x6, x6, x3 add P6, P5, P4
sd x6, (x1) sd P6, (P1l)
1d x6, (x11) 1d P7, (Pw)

When can we reuse a physical register?
When next writer of same architectural register commits

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

Physical Register Management

Rename Physical Regs Free st
Table PO PO
x0 P1 P1
x1[P8 P2 P3 Id x1, 0(x3)
X2 P3 P2 :
iy P4 54 addi x3, x1, #4
x4 P5| <x6> sub x6, x7, x6
X5 P6 | <x7>
X6 [P5 P7 [<x3> add x3, X3, x6
X7 | P6 P8 | <x1> 1d x6 O(Xl)
/
Pn'
ROB
‘useexlop |pl/PR1 |p2lPR2 |Rd |LPRd |PRd (LPRd requires
third read port
on Rename
Table for each
instruction)

CS252, Fall 2015, Lecture 7

© Krste Asanovic, 2015

Physical Register Management

= |d x1, 0(x3)

addi x3, x1, #4
sub x6, x7, x6
add x3, X3, x6
Id x6, 0(x1)

Rename Physical Regs Free [jst

Table PO i /_Z
x0 - P1 P1
x1[P€P0 — | P2 P3
X2 N\ P3 P2
x3[P7 P4 P4
x4 N P5
X5 P6
X6 | P5
X7 | P6 P81

Pn|

ROB
use ex op | plf PR1 LPRd | PRd
X id [pl P7 P8 PO

CS252, Fall 2015, Lecture 7

© Krste Asanovic, 2015

Physical Register Management

Rename Physical Regs Free [jst
Table PO
P1 _—
zgpo P Id x1, 0(x3)
X P2 = i
x4 \ P5| <x6> \ sub x6, x7, x6
X5 N\ P6 | <x7> \
X6 [P5 S P7[<x3> add x3, X3, x6
X7 L %RP = Id x6, 0(x1)
Pn' N\
ROB N
use ex| op pll PR1 p2| PR2
X d [p| P7
X addi PO

CS252, Fall 2015, Lecture 7

© Krste Asanovic, 2015

Physical Register Management

Rename Physical Regs Free [jst
Table PO ="
P1]

X1 L0 P2 &> Id x1, 0(x3)
x2 P3 = ddi x3, x1, #4
ol o L b x6. %7, X6
x4 P> <Xx6> =» SUb x6, X/, X
X5 ﬂg’ <x7> \ Pt
X6 P3 P7 [<x3> add x3, x3, x6
X7 [P6 P8 | <R1> p_| 1d x6 O(Xl)

ROB
useex/op [pl/PR1 [p2P Rd [LPRd |PRRd
X d [p| P7 ~x1 | P8 PO
X addi PO X3 P/ R1
X sub| p| P6 |p| P5 x6 | P5 P3

CS252, Fall 2015, Lecture 7

© Krste Asanovic, 2015

Physical Register Management

Rename

Id x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6

| > add x3, X3, x6

Id x6, 0(x1)

Physical Regs Free [jst
Table PO
x0 P1
X1 PO P2
X2 P3 - |
X3 P2— —P4 P4
x4 P5 [<x6>
X5 N P6 | <x7>
X6 P3 P7 [<x3>
X7 [P6 8| <x1> p_|
. < P
ROB N
usd ex| op pl] PR1 p2[PR2X\ | Rd LPRd | PRd
X |d D P7 xl P8 RO
X addi PO X3 | P7 Pil
X sub| p P6 |p P5 X6\ P5 P
X add P1 P3 x3 |*P1 P

CS252, Fall 2015, Lecture 7

© Krste Asanovic, 2015

10

Physical Register Management

Rename Physical Regs Free List
Table PO
X0 P1
x1 [P&PO P2 Id x1, 0(x3)
X2 P3 I
X2 5 i addi x3, x1, #4
§§ P5 <x6z \ sub x6, x7, x6
X
X6 M‘/gg <x3> | | add x3, X3, x6
x7 [P6 P8§<Xl> = |d x6, 0(x1)

ROB
useé exlop | plf PR1 Q2|E52 Rd |LPRd |PRd
X d [p| P7 x1 | P8 PO
X addi PO N x3 | P7 Al
X sub| p| P6 D P5 X6 P5 P3
X add| | P1 P3_[x3~[P1 [P2
X Id PO x6 [*P3 P4

11

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

Physical Register Management

Rename Physical Regs Free [jst
Table PO [<x1> 04
x0 P1 ' |
x1 [PE€PO P2 d x1, 0(x3)
X2 P3 i
3 55 ba addi x3, x1, #4
x4 P5 : sub x6, x7, x6
x5 P6 \
X6 P4 Pg \ add x3, X3, x6
X7 | P6 P
\\ Id x6, 0(x1)
Pn |
ROB
usgex|op [pl/PR1 |p2(PR2 |Rd [\LFRd }PRd Execute &
x x| 1d [p]| P/ [x1 [= PO Commit
X addt; D1—PO /;% P1
X su p| P6 p P5 P5 P3
X add PL_ T P3 | x3 [PL_| P2
X d [ps X6 | P3 P4

CS252, Fall 2015, Lecture 7

© Krste Asanovic, 2015

12

Physical Register Management

Rename Physical Regs Free [jst

Table PO [<x1> D
x0 Pl |<x3> '
x1 P&EPO P2 & Id x1, 0(x3)
X2 P3 i
3 55 b = addi x3, x1, #4
x4 P5 [<x6> P8 sub x6, x7, X6
X5 P6 | <x7> /
X6 P4 Pg] add x3, x3, x6
X7 | P P

° % \\ ld x6, 0(x1)
Pn \

ROB \
usd exlop | pi[PR1 | LPRd Y PRd
X _[x lzldd' D IFD’S \‘57 \ IE(l) Execute &
X X |1adadl| D — I
X sub| p| _P6 5| p3 | commit
X add| pl—Pt—] P1 P2
X Id [p| PO P3 P4

CS252, Fall 2015, Lecture 7

© Krste Asanovic, 2015

13

MIPS R10K Trap Handling

= Rename table is repaired by unrenaming instructions
in reverse order using the PRd/LPRd fields

= The Alpha 21264 had similar physical register file
scheme, but kept complete rename table snapshots

for each instruction in ROB (80 snapshots total)

— Flash copy all bits from snapshot to active table in one
cycle

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

14

Reorder Buffer Holds Active Instructions
(Decoded but not Committed)

... (Older instructions)

1d x1, (x3)
add x3, x1,
sub x6, x7,
add x3, x3,
1d x6, (x1)
add x6, x6,

x2
x9
X6

x3

sd x6, (x1)
1d x6, (x1)

... (Newer instructions)

Cycle t

CS252, Fall 2015, Lecture 7

ROB contents

1 Commit

ks >
N

Execute
_

1d x1, (x3)

b

J \.

___Fetch

\

© Krste Asanovic, 2015

add x3, x1,
sub x6, x7,
add x3, x3,
1d x6, (x1)
add x6, x6,
sd x6, (x1)
1d x6, (x1)

x2
x9
X6

x3

Cyclet +1

15

Separate Issue Window from ROB

The issue window holds only
instructions that have been decoded

and renamed but not issued into usq ex | op pl{PR1 |p2|PR2 |PRd|ROB#
execution. Has register tags and
presence bits, and pointer to ROB
entry.
Oldest Done? Rd LPRd PC Except?

Reorder buffer used to hold

exception information for commit.

Free —

™~

ROB is usually several times larger than issue window — why?

CS252, Fall 2015, Lecture 7

© Krste Asanovic, 2015

16

Superscalar Register Renaming

= Execution unit only sees physical register numbers

Inst

Update
Mapping

1

1

During decode, instructions allocated new physical destination register
Source operands renamed to physical register with newest value

Op | Dest] Srcl | Src2 Op | Dest] Srcl | Src2
1o o Read Addresses Register
155 Rename Table Free List
D Read Data p |

Op PDest] PSrc1] PSrc2] | Op PDest] PSrcl] PSrc2

Does this work?

CS252, Fall 2015, Lecture 7

© Krste Asanovic, 2015

Inst 2

17

Superscalar Register Renaming

Inst 1 |0p |Dest|Srcl|Src2 Op |Dest|Srcl|Src2| Inst2
Update 8y Read Addresses Register
p Read Data p
Must check for
RAW hazards
between
instructions issuing
in same cycle. Can
be done in parallel | | | |
with rename Op | PDest| PSrc1| PSrc2| [Op | PDest| PSrcl| PSrc2

lookup.

MIPS R10K renames 4 serially-RAW-dependent insts/cycle

CS252, Fall 2015, Lecture 7

© Krste Asanovic, 2015

18

Control Flow Penalty

Next fetch

started
Modern processors may
have > 10 pipeline stages
between next PC calculation Butfer
and branch resolution !
_ _ Buffer
How much work is lost if
pipeline doesn’t follow
correct instruction flow? Units
~ : : Result
!_oop length x pipeline
width + buffers executed

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

19

Reducing Control Flow Penalty

= Software solutions
— Eliminate branches - loop unrolling
— Increases the run length

— Reduce resolution time - instruction scheduling
— Compute the branch condition as early as possible (of limited value
because branches often in critical path through code)

= Hardware solutions

— Find something else to do - delay slots
— Replaces pipeline bubbles with useful work (requires software
cooperation) — quickly see diminishing returns

— Speculate - branch prediction
— Speculative execution of instructions beyond the branch
— Many advances in accuracy

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

20

Branch Prediction
Motivation:
Branch penalties limit performance of deeply pipelined
processors
Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:

Prediction structures:
e Branch history tables, branch target buffers, etc.

Mispredict recovery mechanisms:
e Keep result computation separate from commit
e Kill instructions following branch in pipeline
e Restore state to that following branch

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015 21

Importance of Branch Prediction

= Consider 4-way superscalar with 8 pipeline stages
from fetch to dispatch, and 80-entry ROB, and 3
cycles from issue to branch resolution

= On a mispredict, could throw away 8*4+(80-1)=111
instructions

= Improving from 90% to 95% prediction accuracy,

removes 50% of branch mispredicts
— If 1/6 instructions are branches, then move from 60
instructions between mispredicts, to 120 instructions
between mispredicts

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

22

Static Branch Prediction
Overall probability a branch is taken is ~“60-70% but:

backward
90%

% forward

€> 50%

\
—<>
—s

ISA can attach preferred direction semantics to branches, e.g.,
Motorola MC88110

bneO (preferred taken)

beqO (not taken)

ISA can allow arbitrary choice of statically predicted direction,
e.g., HP PA-RISC, Intel I1A-64
typically reported as ~“80% accurate

CS252, Fall 2015, Lecture 7

© Krste Asanovic, 2015

23

Dynamic Branch Prediction
learning based on past behavior

= Temporal correlation
— The way a branch resolves may be a good predictor of the
way it will resolve at the next execution

= Spatial correlation
— Several branches may resolve in a highly correlated
manner (a preferred path of execution)

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015 24

One-Bit Branch History Predictor

» For each branch, remember last way branch went
= Has problem with loop-closing backward branches, as

two mispredicts occur on every loop execution

1. firstiteration predicts loop backwards branch not-taken
(loop was exited last time)

2. lastiteration predicts loop backwards branch taken (loop
continued last time)

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015 25

Branch Prediction Bits

e Assume 2 BP bits per instruction
e Change the prediction after two consecutive mistakes!

BP state:
(predict take/-take) x (last prediction right/wrong)

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

26

Branch History Table (BHT)

Fetch PC IOIO
I\ ,
4 I
'T[k L{ J2k_entry
I-Cache BHT Index L BHT,
: | 2 bits/entry
Instruction
Opcode offset
7 L
+
) }
Branch? Target PC Taken/-Taken?

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

27

Exploiting Spatial Correlation
Yeh and Patt, 1992

if (x[1i] < 7) then
y += 1;

if (x[i] < 5) then
c -= 4;

If first condition false, second condition also
false

History register, H, records the direction of the
last N branches executed by the processor

28

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

Two-Level Branch Predictor

Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~¥95% correct)

|O 10

Fetch PC F k | | I I

2-bit global branch history
shift register

Shift in Taken/-Taken 1
results of each branch T \ \ \ \

Taken/-Taken?

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015 29

Speculating Both Directions

= An alternative to branch prediction is to execute

both directions of a branch speculatively

— resource requirement is proportional to the number of
concurrent speculative executions

— only half the resources engage in useful work when both
directions of a branch are executed speculatively

— branch prediction takes less resources than speculative
execution of both paths

= With accurate branch prediction, it is more cost
effective to dedicate all resources to the
predicted direction!

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

30

Limitations of BHTs

Only predicts branch direction. Therefore, cannot redirect fetch stream until
after branch target is determined.

Correctly predicted A | PC Generation/Mux

taken branch
penalty

Instruction Fetch Stage 1

P
F | Instruction Fetch Stage 2
B | Branch Address Calc/Begin Decode

| | Complete Decode

Jump Register

J | Steer Instructions to Functional units
penalty R
E

Register File Read

Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-III fetch pipeline

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015 31

Branch Target Buffer (BTB)
2k-entry direct-mapped BTB

|-Cache L
PC (can also be associative)
—_ : nradictad
— 3 y i vatig target PQ
. k . . .
e match valid target

e Keep both the branch PC and target PCin the BTB

e PC+4 is fetched if match fails

e Only taken branches and jumps held in BTB

e Next PC determined before branch fetched and decoded

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

32

Combining BTB and BHT

= BTB entries are considerably more expensive than BHT, but
can redirect fetches at earlier stage in pipeline and can
accelerate indirect branches (JR)

= BHT can hold many more entries and is more accurate

A | PC Generation/Mux

BTB | | P | Instruction Fetch Stage 1
F
B

Instruction Fetch Stage 2

BHT in later & BHT
pipeline stage
corrects when

Branch Address Calc/Begin Decode

| | Complete Decode

BTB misses a J | Steer Instructions to Functional units
predicted taken R | Register File Read
branch

E

/ Integer Execute

BTB/BHT only updated after branch resolves in E stage

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

Uses of Jump Register (JR)

= Switch statements (jump to address of matching
case)

BTB works well if same case used repeatedly

= Dynamic function call (jump to run-time function

address)
BTB works well if same function usually called, (e.g., in C+
+ programming, when objects have same type in virtual
function call)

= Subroutine returns (jump to return address)
BTB works well if usually return to the same place

=> Often one function called from many distinct call sites!
How well does BTB work for each of these cases?

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

34

Subroutine Return Stack

Small structure to accelerate JR for subroutine returns,

typically much more accurate than BTBs.
fa() { £b(); }
fb() { fc(); }
fc() { £d4(); }

Pop return address when

Push call address when
function call executed/\ m subroutine return decoded

&£d () k entries
&fc () (typically k=8-16)

&fb ()

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015 35

Return Stack in Pipeline

= How to use return stack (RS) in deep fetch pipeline?
= Only know if subroutine call/return at decode

RS Push/Pop IS@

RS

@ |TM|O|>

decode gives
large bubble in
fetch stream.

/

J
R
E

PC Generation/Mux

Instruction Fetch Stage 1

Instruction Fetch Stage 2

Branch Address Calc/Begin Decode
Complete Decode

Steer Instructions to Functional units
Register File Read

Integer Execute

Return Stack prediction checked

CS252, Fall 2015, Lecture 7

© Krste Asanovic, 2015

Return Stack in Pipeline

= Can remember whether PC is subroutine call/return
using BTB-like structure
= Instead of target-PC, just store push/pop bit

C [ms

Push/Pop before
instructions decoded!

A | PC Generation/Mux

P | Instruction Fetch Stage 1
F

B

Instruction Fetch Stage 2

Branch Address Calc/Begin Decode

| | Complete Decode

Steer Instructions to Functional units

J
R | Register File Read
E

/ Integer Execute

Return Stack prediction checked

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

In-Order vs. Out-of-Order Branch Prediction

In-Order <

= Speculative fetch but not speculative
execution - branch resolves before

.

In-Order Issue

Fetch

Br. Pred.

v

Decode

v

Execute

A

v

Commit

later instructions complete

= Completed values held in bypass

network until commit

Resolve

In-Order

In-Order —

Out-of-Order Issue

Fetch

Br. Pred.

v

Decode

v

A

Resolve

ROB

v

f

Execute

} Out-of-Order

v

Commit

= Speculative execution, with branches

resolved after later instructions complete
= Completed values held in rename

registers in ROB or unified physical

register file until commit

e Both styles of machine can use same branch predictors in front-end fetch pipeline,
and both can execute multiple instructions per cycle

e Common to have 10-30 pipeline stages in either style of design

CS252, Fall 2015, Lecture 7

© Krste Asanovic, 2015

38

InO vs. 000 Mispredict Recovery

= In-order execution?
— Design so no instruction issued after branch can write-back
before branch resolves
— Kill all instructions in pipeline behind mispredicted branch

= Qut-of-order execution?
— Multiple instructions following branch in program order
can complete before branch resolves

— A simple solution would be to handle like precise traps
— Problem?

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015 39

Branch Misprediction in Pipeline
nject correct PC

Branch ill Branch :
Resolutio

Prediction
Kill Kill

Pd— Fetch " Decode [Reorder Buffer)—» Commit

l ‘ Complete

Execute

= Can have multiple unresolved branches in ROB

= Can resolve branches out-of-order by killing all the instructions in
ROB that follow a mispredicted branch

= MIPS R10K uses four mask bits to tag instructions that are
dependent on up to four speculative branches

= Mask bits cleared as branch resolves, and reused for next branch

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015 40

Rename Table Recovery

= Have to quickly recover rename table on branch
mispredicts

= MIPS R10K only has four snapshots for each of four
outstanding speculative branches

= Alpha 21264 has 80 snapshots, one per ROB
Instruction

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015 41

Load-Store Queue Design

= After control hazards, data hazards through memory
are probably next most important bottleneck to
superscalar performance

= Modern superscalars use very sophisticated load-
store reordering techniques to reduce effective
memory latency by allowing loads to be speculatively
issued

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

49

Speculative Store Buffer

Address Data
Speculative
Store Buffer
VIS Tag Data
VIS Tag Data
VIS Tag Data
VIS Tag Data
VIS Tag Data
VIS Tag Data
Store Commit
Path
Tags Data

L1 Data Cache

CS252, Fall 2015, Lecture 7

Just like register updates, stores should
not modify the memory until after the
instruction is committed. A speculative
store buffer is a structure introduced to
hold speculative store data.
During decode, store buffer slot allocated
in program order
Stores split into “store address” and
“store data” micro-operations
“Store address” execution writes tag
“Store data” execution writes data
Store commits when oldest instruction
and both address and data available:

— clear speculative bit and eventually

move data to cache

On store abort:

— clear valid bit

© Krste Asanovic, 2015 50

Load bypass from speculative store

buffer
Speculative Load Address
[
Store Buffer L1 Data Cache
VIS Tag Data
VIS Tag Data
VIS Tag Data
VIS Tag Data Tags Data
VIS Tag Data
VIS Tag Data

! Load Data

\ 4

= |f data in both store buffer and cache, which should we use?
Speculative store buffer

= |f same address in store buffer twice, which should we use?
Youngest store older than load

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015 51

Memory Dependencies

sd x1, (x2)
1d x3, (x4)

= When can we execute the load?

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

52

In-Order Memory Queue

= Execute all loads and stores in program order
= => Load and store cannot leave ROB for execution
until all previous loads and stores have completed

execution

= Can still execute loads and stores speculatively, and
out-of-order with respect to other instructions

» Need a structure to handle memory ordering...

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

53

Conservative 0-0-0O Load Execution

sd x1, (x2)
1d x3, (x4)

= Can execute load before store, if addresses known
and x4 1= x2
= Each load address compared with addresses of all

previous uncommitted stores
— canh use partial conservative check i.e., bottom 12 bits of
address, to save hardware

= Don’t execute load if any previous store address not
known
= (MIPS R10K, 16-entry address queue)

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

54

Address Speculation

sd x1, (x2)
1d x3, (x4)

= Guess that x4 1= x2

» Execute load before store address known

= Need to hold all completed but uncommitted load/
store addresses in program order

= |f subsequently find x4==x2, squash load and all
following instructions

= =>large penalty for inaccurate address speculation

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

55

Memory Dependence Prediction
(Alpha 21264)

sd x1, (x2)
1d x3, (x4)

» Guess that x4 = x2 and execute load before store

= |f [ater find x4==x2, squash load and all following
instructions, but mark load instruction as store-wait

= Subsequent executions of the same load instruction
will wait for all previous stores to complete

» Periodically clear store-wait bits

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

56

Acknowledgements

= This course is partly inspired by previous MIT 6.823
and Berkeley CS252 computer architecture courses

created by my collaborators and colleagues:
— Arvind (MIT)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)

CS252, Fall 2015, Lecture 7 © Krste Asanovic, 2015

57

