CS252 Graduate Computer Architecture

Fall 2015
Lecture 6: Modern
Out-of-Order Processors

Krste Asanovic
krste@eecs.berkeley.edu
http://inst.eecs.berkeley.edu/~cs252/falb

CS252, Fall 2015, Lecture 6 © Krste Asanovic, 2015



Supercomputers

Definitions of a supercomputer:

= Fastest machine in world at given task

= A device to turn a compute-bound problem into an
/0 bound problem

= Any machine costing S30M+

= Any machine designed by Seymour Cray

= CDC6600 (Cray, 1964) regarded as first
supercomputer
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CDC 6600 Seymour Cray, 1963

g g A fast pipelined machine with 60-bit words

— 128 Kword main memory capacity, 32 banks
= Ten functional units (parallel, unpipelined)
— Floating Point: adder, 2 multipliers, divider
— Integer: adder, 2 incrementers, ...
= Hardwired control (no microcoding)
= Scoreboard for dynamic scheduling of instructions
= Ten Peripheral Processors for Input/Output
| — a fast multi-threaded 12-bit integer ALU
= Very fast clock, 10 MHz (FP add in 4 clocks)
= >400,000 transistors, 750 sqg. ft., 5 tons, 150 kW, novel
&= freon-based technology for cooling
= Fastest machine in world for 5 years (until 7600)
— over 100 sold (S7-10M each)
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CDC 6600:
A Load/Store Architecture

e Separate instructions to manipulate three types of reg.
e 8x60-bit data registers (X)
e 8x18-bit address registers (A)
e 8x18-bit index registers (B)

e All arithmetic and logic instructions are register-to-register

6 3 3 3
\opcode| i | j] k Ri < Rj op Rk
*Only Load and Store instructions refer to memory!
6 3 3 18
opcode| i | j disp Ri < M[Rj + disp]

Touching address registers 1 to 5 initiates a load
6 to 7 initiates a store
- very useful for vector operations
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CDC 6600: Datapath
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CDC6600 ISA designed to simplify high-

performance implementation
Use of three-address, register-register ALU instructions
simplifies pipelined implementation
— Only 3-bit register specifier fields checked for dependencies
— No implicit dependencies between inputs and outputs
Decoupling setting of address register (Ar) from retrieving
value from data register (Xr) simplifies providing multiple

outstanding memory accesses
— Software can schedule load of address register before use of value
— Can interleave independent instructions inbetween

CDC6600 has multiple parallel but unpipelined functional units
— E.g., 2 separate multipliers

Follow-on machine CDC7600 used pipelined functional units
— Foreshadows later RISC designs
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CDC6600: Vector Addition

BO < -n
loop: JZE BO, exit

A0 <— BO+ a0 load X0
Al < BO+DbO load X1
X6 <— X0+ X1

A6 <— BO+cO store X6
BO < BO+1

jump loop

Ai = address register
Bi = index register
Xi = data register
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CDC6600 Scoreboard

= Instructions dispatched in-order to functional units

provided no structural hazard or WAW
— Stall on structural hazard, no functional units available
— Only one pending write to any register

= Instructions wait for input operands (RAW hazards)

before execution
— Can execute out-of-order

* Instructions wait for output register to be read by

preceding instructions (WAR)
— Result held in functional unit until register free

CS252, Fall 2015, Lecture 6 © Krste Asanovic, 2015



CS252, Fall 2015

MEMORANDUM

August 28, 1983

Memorandum To: Messrs., A. L. Williams
T. V. Learson
H, W. Miller, Jr.
E. R. Piore
Q. M. Scott
M, 3, Smith
A. X. Watson

Last week CDC had a press conference during which they
oificially announced their €800 system. I understand that in the
laboratory developing this system there are only 34 people, "including
the janitor." Of these, 14 are engineers and 4 are programmers, and
only bne person has a Ph. D., a relatively junior programmer. To the
cutsider, the laboratory appearsd to be cost conscious, hard working
and highly motivated, e

Corntrasting this modest effort with our own vast development
activities, Ifail to understand why we have lost our industry leadership
position by letting someone else offer the world's most poewerful computer,
At Jenny Lake, I think top priority should be given to a discussion as to
what we are doing wrong and how we should go about changing it Immediately.

TIW, Jr:jmc T. J. Watson, Jr.

[© IBM]

ce: Mr. W. B. McWhirter



IBM 360/91 Floating-Point Unit

R. M. Tomasulo, 1967

Floating-Point
Regfile

1p tag/data . :
Zg tagdata |Oad instructions 1 0 tag/data ‘
3|p ttag/data buffers 2 |p ftag/data [*
4p ftag/data | (from 3 g Egz;gg’;g
5o ftag/data 4
6lp_tag/data memory)
Distribute I Il
reservation 1 ftag/data o ltag/data | I 3
. 2 |p ltag/data |p ltag/data | 1|p tag/data |p tag/data
stations 3 b tag/data |p tag/data | 2p tag/data |p ftag/data
to
functional \ Adder/ \ Mult /
units

}

< tag, rpqul’r > |

1

tag/data

store buffers

O O

tag/data

(to memory) Jp

tag/data

Common bus ensures that data is made available
immediately to all the instructions waiting for it.

Match tag, if equal, copy value & set presence
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Out-of-Order Fades into Background
Out-of-order processing implemented commercially in
1960s, but disappeared again until 1990s as two major
problems had to be solved:

= Precise traps
— Imprecise traps complicate debugging and OS code
— Note, precise interrupts are relatively easy to provide

= Branch prediction
— Amount of exploitable instruction-level parallelism (ILP)
limited by control hazards

Also, simpler machine designs in new technology beat

complicated machines in old technology
— Big advantage to fit processor & caches on one chip
— Microprocessors had era of 1%/week performance scaling
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Separating Completion from Commit

= Re-order buffer holds register results from

completion until commit

— Entries allocated in program order during decode

— Buffers completed values and exception state until in-order
commit point

— Completed values can be used by dependents before
committed (bypassing)

— Each entry holds program counter, instruction type,
destination register specifier and value if any, and
exception status (info often compressed to save hardware)

= Memory reordering needs special data structures

— Speculative store address and data buffers
— Speculative load address and data buffers
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In-Order Commit for Precise Traps

In-order Out-of-order In-order
Fetch " Decode — Reorder Buffer f——{ Commit
i ]

Kill -

 Execute |

Inject handler PC

In-order instruction fetch and decode, and dispatch to
reservation stations inside reorder buffer

Instructions issue from reservation stations out-of-order
Out-of-order completion, values stored in temporary buffers
Commit is in-order, checks for traps, and if none updates
architectural state
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Phases of Instruction Execution

PC
L4
|-cache

—

Fetch: Instruction bits retrieved from
instruction cache.

Fetch Buffer

v

Decode/Rename

v

Decode: Instructions dispatched to
appropriate issue buffer

Issue Buffer
]

[Functional Units]

1!

Execute: Instructions and operands issued to

functional units. When execution completes,

all results and exception flags are available.

Result Buffer

I 7

[ Commit ]
¥

Architectural

Commit: Instruction irrevocably updates
architectural state (aka “graduation”), or
takes precise trap/interrupt.

State

CS252, Fall 2015, Lecture 6

© Krste Asanovic, 2015

14



In-Order versus Out-of-Order Phases

= [nstruction fetch/decode/rename always in-order
— Need to parse ISA sequentially to get correct semantics
— Proposals for speculative OoO0 instruction fetch, e.g.,
Multiscalar. Predict control flow and data dependencies
across sequential program segments fetched/decoded/
executed in parallel, fixup if prediction wrong

= Dispatch (place instruction into machine buffers to

wait for issue) also always in-order
— Some use “Dispatch” to mean issue, but not in these
lectures
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In-Order Versus Out-of-Order Issue

* In-order issue:
— |ssue stalls on RAW dependencies or structural hazards, or
possibly WAR/WAW hazards
— Instruction cannot issue to execution units unless all
preceding instructions have issued to execution units

= Qut-of-order issue:

— Instructions dispatched in program order to reservation
stations (or other forms of instruction buffer) to wait for
operands to arrive, or other hazards to clear

— While earlier instructions wait in issue buffers, following
instructions can be dispatched and issued out-of-order
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In-Order versus Out-of-Order Completion

= All but the simplest machines have out-of-order
completion, due to different latencies of functional
units and desire to bypass values as soon as available

= Classic RISC 5-stage integer pipeline just barely has in-

order completion

— Load takes two cycles, but following one-cycle integer op
completes at same time, not earlier
— Adding pipelined FPU immediately brings OoO completion
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In-Order versus Out-of-Order Commit

* In-order commit supports precise traps, standard

today
— Some proposals to reduce the cost of in-order commit by
retiring some instructions early to compact reorder buffer,
but this is just an optimized in-order commit

= Qut-of-order commit was effectively what early OoO
machines implemented (imprecise traps) as

completion irrevocably changed machine state
- i.e., complete == commit in these machines
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000 Design Choices

= Where are reservation stations?
— Part of reorder buffer, or in separate issue window?
— Distributed by functional units, or centralized?

= How is register renaming performed?
— Tags and data held in reservation stations, with separate
architectural register file
— Tags only in reservation stations, data held in unified
physical register file

CS252, Fall 2015, Lecture 6 © Krste Asanovic, 2015

19



“Data-in-ROB” Design
(HP PA8000, Pentium Pro, Core2Duo, Nehalem)

Oldest VL1 Opcode || p [Tag| Srcl || p|Tag| Src2 || p | Reg| Result |Except?
==>S .

v|i || Opcode || p|Tag| Srcl ||p|Tag| Src2 || p | Reg| Result |Except?

Er v|i || Opcode || p|Tag| Srcl ||p|Tag| Src2 || p | Reg| Result |Except?

€€ v|i || Opcode || p|Tag| Srcl ||p|Tag| Src2 || p | Reg| Result |Except?

v|i || Opcode || p|Tag| Srcl ||p|Tag| Src2 || p | Reg| Result |Except?

= Managed as circular buffer in program order, new instructions dispatched
to free slots, oldest instruction committed/reclaimed when done (“p” bit
set on result)

= Tagis given by index in ROB (Free pointer value)

= |n dispatch, non-busy source operands read from architectural register file
and copied to Srcl and Src2 with presence bit “p” set. Busy operands copy
tag of producer and clear “p” bit.

= Set valid bit “v” on dispatch, set issued bit “i” on issue

= On completion, search source tags, set “p” bit and copy data into src on tag
match. Write result and exception flags to ROB.

= On commit, check exception status, and copy result into architectural
register file if no trap.

= On trap, flush machine and ROB, set free=oldest, jump to handler
CS252, Fall 2015, Lecture 6 © Krste Asanovic, 2015



Managing Rename for Data-in-ROB

Rename table
associated with
architectural
registers,
managed in
decode/dispatch

p|Tag Value
p|Tag Value
p|Tag Value
p|Tag Value

One
entry
. per
arch.

—

register

= |f “p” bit set, then use value in architectural register file

Else, tag field indicates instruction that will/has produced value
For dispatch, read source operands <p,tag,value> from arch.

regfile, and also read <p,result> from producing instruction in
ROB, bypassing as needed. Copy to ROB

tag to ROB index of this instruction
= On commit, update arch. regfile with <1, , Result>
= On trap, reset table (All p=1)
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Data Movement in Data-in-ROB Design

Architectural Register Write results at

File commit
Rea.d operands Read results for
during decode .
commit
Write sources v v *
s \ 4
in dispatch i R w— Bypass newer
¥ ¥ values at dispatch
Source Result
ROB Operands Data
A
Read 7 Write results at
operands at v v completion
issue

Functional Units

22
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Unified Physical Register File

(MIPS R10K, Alpha 21264, Intel Pentium 4 & Sandy/Ivy Bridge)

= Rename all architectural registers into a single physical register
file during decode, no register values read

= Functional units read and write from single unified register file
holding committed and temporary registers in execute

= Commit only updates mapping of architectural register to
physical register, no data movement

Decode Stage Committed

Regist'er T Unified Physical e Register
Mapping Register File Mapping

A

Read operands at issue Werite results at completion

A 4 A 4

Functional Units

23
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Lifetime of Physical Registers

® Physical regfile holds committed and speculative values
e Physical registers decoupled from ROB entries (no data in ROB)

1d x1, (x3) 1d Pl, (Px)
addi x3, x1, #4 addi P2, P1l, #4
sub x6, x7, x9 sub P3, Py, Pz
add x3, x3, x6 add P4, P2, P3
1d x6, (x1) Rename 1d P5, (P1)
add x6, x6, x3 add P6, P5, P4
sd x6, (x1) sd P6, (P1l)
1d x6, (x11) 1d P7, (Pw)

When can we reuse a physical register?
When next writer of same architectural register commits
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Physical Register Management

Rename Physical Regs  Free st
Table PO PO
x0 P1 P1
x1[P8 P2 P3 Id x1, 0(x3)
X2 P3 P2 :
iy P4 54 addi x3, x1, #4
x4 P5| <x6> sub x6, x7, x6
X5 P6 | <x7>
X6 [P5 P7 [<x3> add x3, X3, x6
X7 | P6 P8 | <x1> 1d x6 O(Xl)
/
Pn'
ROB
‘useexlop |pl/PR1 |p2lPR2 |Rd |LPRd |PRd (LPRd requires
third read port
on Rename
Table for each
instruction)
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Physical Register Management

= |d x1, 0(x3)

addi x3, x1, #4
sub x6, x7, x6
add x3, X3, x6
Id x6, 0(x1)

Rename Physical Regs  Free [jst

Table PO i /_Z
x0 - P1 P1
x1[P€P0 — | P2 P3
X2 N\ P3 P2
x3[P7 P4 P4
x4 N P5
X5 P6
X6 | P5
X7 | P6 P81

Pn|

ROB
use ex op | plf PR1 LPRd | PRd
X id [pl P7 P8 PO
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Physical Register Management

Rename Physical Regs  Free [jst
Table PO
P1 _—
ngo P Id x1, 0(x3)
X P2 = i
x4 \ P5| <x6> \ sub x6, x7, x6
X5 N\ P6 | <x7> \
X6 [P5 S P7[<x3> add x3, X3, x6
X7 L WRP = Id x6, 0(x1)
Pn' N\
ROB N
use ex| op pll PR1 p2| PR2
X d [p| P7
X addi PO
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Physical Register Management

Rename Physical Regs  Free [jst
Table PO o<
P1 >

X1 PO P2 B Id x1, 0(x3)
X2 P3 T (P2 ddi x3 1 #4
o - L s cub X6, x7, x6
x4 P> <Xx6> =» SUb x6, X/, X
x5 ﬂg’ <x7> \ et
X6 P3 P7 [<x3> add x3, x3, x6
X7 [ P6 P8 | <R1> p_| 1d x6 O(Xl)

ROB
useex|op [pl|PR1 [p2/PR2. [Rd |[LPRd |PRRd
X d [p| P7 x1 [ P8 PO
X addi PO X3~ _P7 Rl
X sub| p| P6 |p| P5 x6 | P5 P3
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Physical Register Management

Rename

Id x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6

| > add x3, X3, x6

Id x6, 0(x1)

Physical Regs  Free [jst
Table PO
x0 P1
X1 PO P2
X2 P3 - |
X3 P2— —P4 P4
x4 P5 [ <x6>
X5 N P6 | <x7>
X6 P3 P7 [<x3>
X7 [ P6 8| <x1> p_|
. < P
ROB N
usd ex| op pl] PR1 p2[ PR2X\ | Rd LPRd | PRd
X |d D P7 xl P8 RO
X addi PO X3 | P7 Pil
X sub| p P6 |p P5 X6\ P5 P
X add P1 P3 x3 |*P1 P
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Physical Register Management

Rename Physical Regs Free List
Table PO
X0 P1
x1 [P&PO P2 Id x1, 0(x3)
X2 P3 I
X2 5 i addi x3, x1, #4
§§ P5 <x6z \ sub x6, x7, x6
X
X6 M‘/gg <x3> | | add x3, X3, x6
x7 [P6 P8§<Xl> = |d x6, 0(x1)

ROB
useé exlop | plf PR1 Q2|E52 Rd |LPRd |PRd
X d [p| P7 x1 | P8 PO
X addi PO N x3 | P7 Al
X sub| p| P6 D P5 X6 P5 P3
X add| | P1 P3_[x3~[P1 [ P2
X Id PO x6 [*P3 P4

30
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Physical Register Management

Rename Physical Regs  Free [jst
Table PO [<x1> 04
x0 P1 ' |
x1 [PE€PO P2 d x1, 0(x3)
X2 P3 i
3 55 ba addi x3, x1, #4
x4 P5 : sub x6, x7, x6
x5 P6 \
X6 P4 Pg \ add x3, X3, x6
X7 | P6 P
\\ Id x6, 0(x1)
Pn |
ROB
usgex|op [pl/PR1 |p2(PR2 |Rd [\LFRd }PRd Execute &
x x| 1d [p]| P/ [ x1 [ = PO Commit
X addt; D1—PO /;% P1
X su p| P6 p P5 P5 P3
X add PL_ T P3 | x3 [ PL_| P2
X d [ ps X6 | P3 P4
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Physical Register Management

Rename Physical Regs  Free [jst

Table PO [<x1> D
x0 Pl |<x3> '
x1 P&EPO P2 & Id x1, 0(x3)
X2 P3 i
3 55 b = addi x3, x1, #4
x4 P5 [ <x6> P8 sub x6, x7, X6
X5 P6 | <x7> /
X6 P4 Pg ] add x3, x3, x6
X7 | P P

° % \\ ld x6, 0(x1)
Pn \

ROB \
usd exlop | pi[PR1 | LPRd Y PRd
X _[x lzldd' D IFD’S \‘57 \ IE(l) Execute &
X X |1adadl| D — I
X sub| p| _P6 5| p3 | commit
X add| pl—Pt—] P1 P2
X Id [ p| PO P3 P4
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MIPS R10K Trap Handling

= Rename table is repaired by unrenaming instructions
in reverse order using the PRd/LPRd fields

= The Alpha 21264 had similar physical register file
scheme, but kept complete rename table snapshots

for each instruction in ROB (80 snapshots total)

— Flash copy all bits from snapshot to active table in one
cycle
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