CS252 Graduate Computer Architecture

Fall 2015
Lecture 5: Out-of-Order Processing

Krste Asanovic
krste@berkeley.edu
http://inst.eecs.berkeley.edu/~cs252/fal5

CS252, Fall 2015, Lecture 5 © Krste Asanovic, 2015

Last Time in Lecture 4

= [ron Law of processor performance
* Pipelining: reduce cycle time, try to keep CPI low

» Hazards:
— Structural hazards: interlock or more hardware
— Data hazards: interlocks, bypass, speculate
— Control hazards: interlock, speculate

= Precise traps/interrupts for in-order pipeline

CS252, Fall 2015, Lecture 5 © Krste Asanovic, 2015

IBM 7030 “Stretch” (1954-1961)

= Original goal was to use new transistor technology to
give 100x performance of tube-based IBM 704.

= Design based around 4 stages of “lookahead”
pipelining

= More than just pipelining, a simple form of decoupled
execution with indexing and branch operations
performed speculatively ahead of data operations

» Also had a simple store buffer

= Very complex design for the time, difficult to explain
to users performance of pipelined machine

= When finally delivered, was benchmarked at only 30x
704 and embarrassed IBM, causing withdrawal after
initial deliveries

CS252, Fall 2015, Lecture 5 © Krste Asanovic, 2015

Simple vector-vector add code example

for (i=0; i<N; i++)
A[1]=B[1]+C[1];

3= I+

loop: f1ld £0, 0(x2) // x2 points to B
fld £f1, 0(x3) // x3 points to C
fadd.d £2, £0, f1
fsd £2, 0(x1l) // x1 points to A

add x1, 8 // Bump pointer
add x2, 8 // Bump pointer
add x3, 8 // Bump pointer

bne x1, x4, loop // x4 holds end

CS252, Fall 2015, Lecture 5 © Krste Asanovic, 2015

Simple Pipeline Scheduling

Can reschedule code to try to reduce pipeline hazards

loop: f1d £0, 0(x2) // x2 points to B
fld £f1, 0(x3) // x3 points to C

add x3, 8 // Bump pointer
add x2, 8 // Bump pointer
fadd.d f2, £0, f1

add x1, 8 // Bump pointer

fsd £f2, -8(x1l) // x1 points to A
bne x1, x4, loop // x4 holds end

Long latency loads and floating-point operations limit parallelism
within a single loop iteration

CS252, Fall 2015, Lecture 5 © Krste Asanovic, 2015

Loop Unrolling

Can unroll to expose more parallelism

loop: f£f1d
fld
fld
fld
add
add

£f0, 0(x2) // x2 points to B
fl1, 0(x3) // x3 points to C
£f10, 8 (x2)

£11, 8(x3)

x3, 16 // Bump pointer

x2, 16 // Bump pointer

fadd.d £2, f0, f1
fadd.d f12, £10, f11

add
fsd
fsd
bne

CS252, Fall 2015, Lecture 5

x1l, 16 // Bump pointer

f2, -16(x1) // x1 points to A
£f12, -8(x1)

x1l, x4, loop // x4 holds end

Unrolling limited by number of architectural registers

Unrolling increases instruction cache footprint

More complex code generation for compiler, has to understand pointers
Can also software pipeline, but has similar concerns

© Krste Asanovic, 2015

Decoupling (lookahead, runahead) in parchitecture

Can separate control and memory address operations from data
computations:

loop: f1d £0, 0(x2) // x2 points to B
fld £f1, 0(x3) // x3 points to C
fadd.d £2, f£0, f1l
fsd £2, 0(x1l) // x1 points to A

add x1, 8 // Bump pointer
add x2, 8 // Bump pointer
add x3, 8 // Bump pointer

bne x1, x4, loop // x4 holds end

The control and address operations do not depend on the data
computations, so can be computed early relative to the data
computations, which can be delayed until later.

CS252, Fall 2015, Lecture 5 © Krste Asanovic, 2015

Simple Decoupled Machine

Integer Pipeline

Load Address

CS252, Fall 2015, Lecture 5

Check

v

i

Store Address
Queue

MW\)

LOp Queue

{Load Data Writeback pOp}
{Compute pOp}
{Store Data Read pOp}

Load Data Queue

X1

X2

X3

W

Load i

Data
Store Data
Queue

© Krste Asanovic, 2015

Floating-Point
Pipeline

CS252, Fall 2015, Lecture 5

Decoupled Execution

£l1d f£0

fld f1

— Send load to memory, queue up write to fO
— Send load to memory, queue up write to f1

fadd.d— Queue up fadd.d

fsd f£2

> Queue up store address, wait for store data

add x1

add x2

> Bump pointer |~ .« 1oad Many writes to fO
— Bump pointer |address against ~€an be in queue at

add x3

—> Bump pointer |queued pending Same time

bne

—> Take branch store addresses

£l1d f£0

—> Send load to memory, queue up write to fO

fld f1

— Send load to memory, queue up write to f1

fadd.d— Queue up fadd.d

fsd f£2

> Queue up store address, wait for store data

© Krste Asanovic, 2015

Supercomputers

Definitions of a supercomputer:

= Fastest machine in world at given task

= A device to turn a compute-bound problem into an
/0 bound problem

= Any machine costing S30M+

= Any machine designed by Seymour Cray

= CDC6600 (Cray, 1964) regarded as first
supercomputer

CS252, Fall 2015, Lecture 5 © Krste Asanovic, 2015

10

CDC 6600 Seymour Cray, 1963

g g A fast pipelined machine with 60-bit words

— 128 Kword main memory capacity, 32 banks
= Ten functional units (parallel, unpipelined)
— Floating Point: adder, 2 multipliers, divider
— Integer: adder, 2 incrementers, ...
= Hardwired control (no microcoding)
= Scoreboard for dynamic scheduling of instructions
= Ten Peripheral Processors for Input/Output
| — a fast multi-threaded 12-bit integer ALU
= Very fast clock, 10 MHz (FP add in 4 clocks)
= >400,000 transistors, 750 sqg. ft., 5 tons, 150 kW, novel
&= freon-based technology for cooling
= Fastest machine in world for 5 years (until 7600)
— over 100 sold (S7-10M each)

CS252, Fall 2015, Lecture 5 © Krste Asanovic, 2015 1 1

CDC 6600:
A Load/Store Architecture

e Separate instructions to manipulate three types of reg.
e 8x60-bit data registers (X)
e 8x18-bit address registers (A)
e 8x18-bit index registers (B)

e All arithmetic and logic instructions are register-to-register

6 3 3 3
\opcode| i | j] k Ri < Rj op Rk
*Only Load and Store instructions refer to memory!
6 3 3 18
opcode| i | j disp Ri < M[Rj + disp]

Touching address registers 1 to 5 initiates a load
6 to 7 initiates a store
- very useful for vector operations

CS252, Fall 2015, Lecture 5 © Krste Asanovic, 2015

CDC 6600: Datapath

entral
Memory
128K words,
32 banks,

1us cycle

operand

Operand Regs
8 x 60-bit

result

"l 10 Functional

Address Regs
8 x 18-bit

operanol-

addr I_ —

result s

Index Regs
8 x 18-bit

"| Units

IR

Inst. Stack
8 x 60-bit

CS252, Fall 2015, Lecture 5

© Krste Asanovic, 2015

13

CDC6600 ISA designed to simplify high-

performance implementation
Use of three-address, register-register ALU instructions
simplifies pipelined implementation
— Only 3-bit register specifier fields checked for dependencies
— No implicit dependencies between inputs and outputs
Decoupling setting of address register (Ar) from retrieving
value from data register (Xr) simplifies providing multiple

outstanding memory accesses
— Software can schedule load of address register before use of value
— Can interleave independent instructions inbetween

CDC6600 has multiple parallel but unpipelined functional units
— E.g., 2 separate multipliers

Follow-on machine CDC7600 used pipelined functional units
— Foreshadows later RISC designs

14

CS252, Fall 2015, Lecture 5 © Krste Asanovic, 2015

CDC6600: Vector Addition

BO < -n
loop: JZE BO, exit

A0 <— BO+ a0 load X0
Al < BO+DbO load X1
X6 <— X0+ X1

A6 <— BO+cO store X6
BO < BO+1

jump loop

Ai = address register
Bi = index register
Xi = data register

CS252, Fall 2015, Lecture 5 © Krste Asanovic, 2015

15

CDC6600 Scoreboard

= Instructions dispatched in-order to functional units

provided no structural hazard or WAW
— Stall on structural hazard, no functional units available
— Only one pending write to any register

= Instructions wait for input operands (RAW hazards)

before execution
— Can execute out-of-order

* Instructions wait for output register to be read by

preceding instructions (WAR)
— Result held in functional unit until register free

CS252, Fall 2015, Lecture 5 © Krste Asanovic, 2015 1 6

CS252, Fall 2015

MEMORANDUM

August 28, 1983

Memorandum To: Messrs., A. L. Williams
T. V. Learson
H, W. Miller, Jr.
E. R. Piore
Q. M. Scott
M, 3, Smith
A. X. Watson

Last week CDC had a press conference during which they
oificially announced their €800 system. I understand that in the
laboratory developing this system there are only 34 people, "including
the janitor." Of these, 14 are engineers and 4 are programmers, and
only bne person has a Ph. D., a relatively junior programmer. To the
cutsider, the laboratory appearsd to be cost conscious, hard working
and highly motivated, e

Corntrasting this modest effort with our own vast development
activities, Ifail to understand why we have lost our industry leadership
position by letting someone else offer the world's most poewerful computer,
At Jenny Lake, I think top priority should be given to a discussion as to
what we are doing wrong and how we should go about changing it Immediately.

TIW, Jr:jmc T. J. Watson, Jr.

[© IBM]
17

ce: Mr. W. B. McWhirter

IBM Memo on CDC6600

Thomas Watson Jr., IBM CEO, August 1963:
“Last week, Control Data ... announced the 6600
system. | understand that in the laboratory developing
the system there are only 34 people including the
janitor. Of these, 14 are engineers and 4 are
programmers... Contrasting this modest effort with our
vast development activities, | fail to understand why
we have lost our industry leadership position by letting
someone else offer the world's most powerful
computer.”

To which Cray replied: “It seems like Mr. Watson has
answered his own question.”

CS252, Fall 2015, Lecture 5 © Krste Asanovic, 2015 1 8

IBM 360/91 Floating-Point Unit

R. M. Tomasulo, 1967

Floating-Point
Regfile

;p tag/data load instructions 1 o kag/data
p tag/data 5 ’
4jp_tag/data | (from 3 b ag/data
5o ftag/data 4
6lp_ttag/data memory)
Distribute 11
instruction 1 b ftag/data | ltag/data ‘'3 v v
2 |p ltag/data |p ftag/data | 1jp ftag/data |p tag/data
templates 3 |p_ftag/data |p ftag/data | 2|p ftag/data |p ltag/data
by
functional \ Adder/ \ Mult /
units

}

< tag, rpqul’r > |

1

tag/data

store buffers

O O

tag/data

(to memory)

tag/data

CS252, Fall 2015, Lecture 5

Common bus ensures that data is made available
immediately to all the instructions waiting for it.

Match tag, if equal, copy value & set presence

© Krste Asanovic, 2015

a“ 7

p”.
19

IBM ACS

= Second supercomputer project (Y) started at IBM in
response to CDC6600

= Multiple Dynamic instruction Scheduling invented by
Lynn Conway for ACS

— Used unary encoding of register specifiers and wired-OR

logic to detect any hazards (similar design used in Alpha
21264 in 1995!)

= Seven-issue, out-of-order processor
— Two decoupled streams, each with DIS

= Cancelled in favor of IBM360-compatible machines

CS252, Fall 2015, Lecture 5 © Krste Asanovic, 2015 20

Precise Traps and Interrupts

= This was the remaining challenge for early out-of-
order machines

» Technology scaling meant plenty of performance
improvement with simple in-order pipelining and
cache improvements

= Qut-of-order machines disappeared from 60s until
90s

CS252, Fall 2015, Lecture 5 © Krste Asanovic, 2015

21

Acknowledgements

= This course is partly inspired by previous MIT 6.823
and Berkeley CS252 computer architecture courses

created by my collaborators and colleagues:
— Arvind (MIT)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)

CS252, Fall 2015, Lecture 5 © Krste Asanovic, 2015

22

