CS252 Graduate Computer Architecture

Fall 2015
Lecture 4: Pipelining

Krste Asanovic
krste@berkeley.edu
http://inst.eecs.berkeley.edu/~cs252/fal5

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

Last Time in Lecture 3

= Microcoding, an effective technique to manage
control unit complexity, invented in era when logic
(tubes), main memory (magnetic core), and ROM
(diodes) used different technologies

= Difference between ROM and RAM speed motivated
additional complex instructions

= Technology advances leading to fast SRAM made
technology assumptions invalid

= Complex instructions sets impede parallel and
pipelined implementations

= Load/store, register-rich ISAs (pioneered by Cray,
popularized by RISC) perform better in new VLSI
technology

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

“lron Law” of Processor Performance

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

= [nstructions per program depends on source
code, compiler technology, and ISA

= Cycles per instructions (CPI) depends on ISA and
uarchitecture

= Time per cycle depends upon the parchitecture
and base technology

Microarchitecture CPI cycle time
Microcoded >1 short
Single-cycle unpipelined 1 long
Pipelined 1 short

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

Classic 5-Stage RISC Pipeline

: Writeback

=

| | |

| Fetch | s Decode | EXecute , : Memory

| |

| | q

l | £ <

' ; 3

.
O - \\ Data
2 ! Cach
Instruction | &4 || P ache

Ol & o | K >

o Cache : £ ><",: —
|13 | -
N or < i>

I < 7 I

l i l I

| | | .

| | "

| | | -

l l l .

[] []

This version designed for regfiles/memories

CS252, Fall 2015, Lecture 4

with synchronous reads and writes.

© Krste Asanovic, 2015

-—T—%>

CPI Examples

Microcoded machine Timeg ——
7 cycles 5 cycles 10 cycles
A A A
[Inst 1 ¥ Inst2 Y Inst 3)

(LI TTTTTTITITTTTTITTT]

3 instructions, 22 cycles, CP1=7.33

Unpipelined machine

T3 W T ST E—

3 instructions, 3 cycles, CPI=1

Pipelined machine

3 instructions, 3 cycles, CPI=1
--E-ll 5-stage pipeline CPI#5!!!

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

Instructions interact with each other in pipeline

= An instruction in the pipeline may need a resource
being used by another instruction in the pipeline
— structural hazard

= An instruction may depend on something
produced by an earlier instruction
— Dependence may be for a data value

- data hazard

— Dependence may be for the next instruction’s address
- control hazard (branches, exceptions)

= Handling hazards generally introduces bubbles into
pipeline and reduces ideal CPI > 1

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

Pipeline CPlI Examples

Measure from when first instruction finishes
Timeg —— to when last instruction in sequence finishes.

3 instructions finish in 3 cycles
CPI=3/3=1

L st)]
L liest2] |||
| | | | Hubble |

L | [instl |
_ | | | | Hubbled |
L nst2) |||
_| | | | Hubbled |
] st ||

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

3 instructions finish in 4 cycles
. CPI=4/3=1.33

3 instructions finish in 5cycles
CPI=5/3=1.67

Resolving Structural Hazards

= Structural hazard occurs when two instructions need

same hardware resource at same time
— Can resolve in hardware by stalling newer instruction till
older instruction finished with resource

= A structural hazard can always be avoided by adding

more hardware to design

- E.g., if two instructions both need a port to memory at
same time, could avoid hazard by adding second port to
memory

= Classic RISC 5-stage integer pipeline has no structural
hazards by design
— Many RISC implementations have structural hazards on

multi-cycle units such as multipliers, dividers, floating-point
units, etc., and can have on register writeback ports

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

Types of Data Hazards

Consider executing a sequence of register-register
instructions of type:
fk <= rpopr
Data-dependence
s r,opr, Read-after-Write
re <= r;o0pr, (RAW) hazard

Anti-dependence
r,opr, Write-after-Read
/ r, Op rc (WAR) hazard

Output-dependence
<r3 < r,opr, Write-after-Write
r; <= rgopr, (WAW) hazard

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

Three Strategies for Data Hazards

= Interlock
— Wait for hazard to clear by holding dependent instruction
in issue stage
= Bypass
— Resolve hazard earlier by bypassing value as soon as
available

= Speculate
— Guess on value, correct if wrong

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

10

Interlocking Versus Bypassing

add x1, x3, x5
sub x2,7x1, x4

W add x1, x3, x5

bubble

Instruction interlocked

bubble in decode stage

bubble

wll add x1, x3, x5

FI| D M
F
D
FI| D
FI| D
FI| DI x[\m
Fll oS || m|| w

sub x2, x1, x4

CS252, Fall 2015, Lecture 4

© Krste Asanovic, 2015

X[l MlI| WI| sub x2, x1, x4

Bypass around ALU
with no bubbles

11

Example Bypass Path

| | I
I Fetch I 4, Decode |1 EXecute , : Memory :Writeback
I |
I I ‘;{
' ' c :
' ; ﬁ
_ B
E - \\ " Data —~—
%
ol | Instruction | 84 ¢ aa) 5 Cache
u o ¢ 4 Pl
o Cache = 21§ = .
2] Y e
c) {3
~ or < i>
I : : / | I
| I L B
l 1 ‘ I I o
| | " |r
| | I -
| | I I !
12

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

Fully Bypassed Data Path

required if this is not possible. |

| | |
| Fetch | o Decode | EXecute , : Memory : Writeback
| |
| | q
I | = :% 5
' ; i
.
E - \\ I Data —
Instruction | & ¢ A Cache
Ol g o / o o
- Cache |7 £ I~ ><—',: —
N ol |
c O A
N oc <= Zi
| i = j: / | B
| | ‘ l I H
| | "
" ™
F(| DIl X|| M[| W _ ,
! [Assumes data written to registers
FI| D|| X[|iM \ W in a W cycle is readable in parallel
‘\ D cycle (dotted line). Extra write
FI| D ¢ \\VI W data register and bypass paths
%

CS252, Fall 2015, Lecture 4

M

W

© Krste Asanovic, 2015

13

Value Speculation for RAW Data Hazards

= Rather than wait for value, can guess value!

= So far, only effective in certain limited cases:
— Branch prediction
— Stack pointer updates
— Memory address disambiguation

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

14

Control Hazards

What do we need to calculate next PC?

* For Unconditional Jumps
— Opcode, PC, and offset

= For Jump Register
— Opcode, Register value, and offset

= For Conditional Branches
— Opcode, Register (for condition), PC and offset

= For all other instructions
— Opcode and PC (and have to know it’s not one of above)

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

15

Control flow information in pipeline

Fetch Decode EXecute Memory Writeback
Branch condition,
Opcode, .
PC known Jump register
offset known
A value known
A A A
S Y
é-l =
3 i e \\ ' Data —
(%) —
Instruction | % ¢ | Ol 5 Cache |
F Cache |= P ' P
+ L <
) @0
£ 2l <
- |
T | ‘ , /

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

16

RISC-V Unconditional PC-Relative Jumps

PClumpSel FKill AMump?
v
-o . .
§ [Kill bit turns
© S instruction
O < .
‘ g into a bubble]
> £ L
: |
. 5 'H_\
2 @ bl | |2
LW Instruction | ol | K = -
o P <
O Cache o E'-U,})
c o <
| ' /
Fetch Decode EXecute

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

17

Pipelining for Unconditional PC-Relative Jumps

FK\D X|| M|| W||] target
bubble

FI| D|| X|| M|| W|| target: add x1, x2, x3

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

Branch Delay Slots

= Early RISCs adopted idea from pipelined microcode engines,
and changed ISA semantics so instruction after branch/jump is

always executed before control flow change occurs:

0x100 j target
0x104 add x1, x2, x3 // Executed before target

0x205 target: xori x1, x1, 7
= Software has to fill delay slot with useful work, or fill with

explicit NOP instruction

FIND|| X|| M|| w|| J target

[o[l x

FI| D|| X|| M|| W|| target: xori x1, x1, 7

wl|l add x1, x2, x3

<

19

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

Post-1990 RISC ISAs don’t have delay slots

» Encodes microarchitectural detail into ISA
— c.f. IBM 650 drum layout

= Performance issues
— Increased |-cache misses from NOPs in unused delay slots
— |-cache miss on delay slot causes machine to wait, even if
delay slot is a NOP
= Complicates more advanced microarchitectures
— Consider 30-stage pipeline with four-instruction-per-cycle
issue
= Better branch prediction reduced need
— Branch prediction in later lecture

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015 20

RISC-V Conditional Branches

P :
PCSel i Brapeh? il
-
o o
o Q
@ o Lo
© O P-o)
of | (= | <
‘ &
‘E ' 212
LT .
|L "J);_
Q
Il , % a \
QW Instruction | 24 INRAE:
O (o't €L -
— |9 Cache E % : ><—'E
c LYo o
T Q
| o <
Fetch Decode | EXecute

CS252, Fall 2015, Lecture 4

© Krste Asanovic, 2015

21

Pipelining for Conditional Branches

FI| D \x MI| Wl bea x1, x2, target
F \ bubble
K| bubble

FI| D|| X|| M|| W|| target: add x1, x2, x3

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

22

Pipelining for Jump Register

= Register value obtained in execute stage

Ml WIl Jr x1
bubble

_,.,
;Hz/ >

bubble

FI| D|| X|| M|| W|| target: add x5, x6, x7

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

23

Why instruction may not be dispatched every
cycle in classic 5-stage pipeline (cpi>1)

Full bypassing may be too expensive to implement
— typically all frequently used paths are provided
— some infrequently used bypass paths may increase cycle time and
counteract the benefit of reducing CPI

Loads have two-cycle latency

— Instruction after load cannot use load result

— MIPS-I ISA defined load delay slots, a software-visible pipeline hazard
(compiler schedules independent instruction or inserts NOP to avoid
hazard). Removed in MIPS-II (pipeline interlocks added in hardware)
— MIPS:“Microprocessor without Interlocked Pipeline Stages”

Jumps/Conditional branches may cause bubbles

— kill following instruction(s) if no delay slots

Machines with software-visible delay slots may execute significant
number of NOP instructions inserted by the compiler.
NOPs reduce CPI, but increase instructions/program!

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

24

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

Traps and Interrupts

In class, we’ll use following terminology
= Exception: An unusual internal event caused by

program during execution
- E.g., page fault, arithmetic underflow

= Trap: Forced transfer of control to supervisor caused
by exception
— Not all exceptions cause traps (c.f. IEEE 754 floating-point
standard)

= Interrupt: An external event outside of running
program, which causes transfer of control to
supervisor

* Traps and interrupts usually handled by same pipeline
mechanism

25

History of Exception Handling

= (Analytical Engine had overflow exceptions)

= First system with traps was Univac-l, 1951

— Arithmetic overflow would either
— 1. trigger the execution a two-instruction fix-up routine at address 0,
or
— 2. at the programmer's option, cause the computer to stop
— Later Univac 1103, 1955, modified to add external interrupts
— Used to gather real-time wind tunnel data

= First system with I/O interrupts was DYSEAC, 1954

— Had two program counters, and 1/0 signal caused switch between two
PCs

— Also, first system with DMA (direct memory access by I/O device)

— And, first mobile computer (two tractor trailers, 12 tons + 8 tons)

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

26

Asynchronous Interrupts

= An I/O device requests attention by asserting one
of the prioritized interrupt request lines

= When the processor decides to process the

interrupt
— It stops the current program at instruction I completing all the
instructions up to I;_q (precise interrupt)
- It saves the PC of instruction [; in a special register (EPC)

— It disables interrupts and transfers control to a designated
interrupt handler running in the kernel mode

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

27

Interrupt Handler

= Saves EPC before enabling interrupts to allow nested

interrupts =
— need an instruction to move EPC into GPRs

— need a way to mask further interrupts at least until EPC can
be saved

= Needs to read a status register that indicates the
cause of the interrupt
= Uses a special indirect jump instruction ERET (return-

from-environment) which

— enables interrupts
— restores the processor to the user mode
— restores hardware status and control state

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015 28

Synchronous Trap

= A synchronous trap is caused by an exception on a
particular instruction

* In general, the instruction cannot be completed
and needs to be restarted after the exception has
been handled

— requires undoing the effect of one or more partially executed
instructions

* In the case of a system call trap, the instruction is

considered to have been completed
— a special jump instruction involving a change to a privileged mode

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

29

EXCEptiOn Handling 5-Stage Pipeline

Inst.
Mem

PC address

Exception

Decode

|

lllegal

Opcode Overflow

Asynchronous Interrupts

>\| Data
+ Mem
D

ata address
Exceptions

= How to handle multiple simultaneous
exceptions in different pipeline stages?

» How and where to handle external

asynchronous interrupts?

CS252, Fall 2015, Lecture 4

© Krste Asanovic, 2015

30

EXCEpﬁOn Handling 5-Stage Pipeline

Commit
Point
Inst. DataE
Mem I Decode I MemE
C_/ .
PC address IIIega:j Overflow Data address =
Exception Opcode Exceptions &
1 E
:I I . 3
n (g°)
- O
R : : 5
Select > > : o
Handler Kill Kill D KillE Asynchronous :
pC Stage Stage Stage Interrupts | =
] Kill
Writeback
31

CS252, Fall 2015, Lecture 4

© Krste Asanovic, 2015

EXCEpﬁOﬂ Handling 5-Stage Pipeline

= Hold exception flags in pipeline until commit point (M
stage)

= Exceptions in earlier pipe stages override later
exceptions for a given instruction

= [nject external interrupts at commit point (override
others)

= |f exception at commit: update Cause and EPC
registers, kill all stages, inject handler PC into fetch
stage

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015 32

Speculating on Exceptions

* Prediction mechanism
— Exceptions are rare, so simply predicting no exceptions is very
accurate!

= Check prediction mechanism

— Exceptions detected at end of instruction execution pipeline,
special hardware for various exception types

= Recovery mechanism

— Only write architectural state at commit point, so can throw away
partially executed instructions after exception
— Launch exception handler after flushing pipeline

= Bypassing allows use of uncommitted instruction
results by following instructions

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

33

Issues in Complex Pipeline Control

e Structural conflicts at the execution stage if some FPU or memory unit is not
pipelined and takes more than one cycle

e Structural conflicts at the write-back stage due to variable latencies of different
functional units

e Qut-of-order write hazards due to variable latencies of different functional
units

e How to handle exceptions?

ALU ™ Mem \

>
Fadd /
Fmul

Fdiv

IF ™ ID

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015 34

Complex In-Order Pipeline

y

Inst. Data
Mermn Decode H{ GPRs Mem
= Delay writeback so all operations '
have same latency to W stage l
FPRs FAdd

— Write ports never oversubscribed
(one inst. in & one inst. out every

cycle)

— Stall pipeline on long latency

operations, e.g., divides, cache

misses

— Handle exceptions in-order at

commit point

How to prevent increased writeback latency
from slowing down single cycle integer

operations? Bypassing

CS252, Fall 2015, Lecture 4

FMul

3|
—
—

FDi\

npipeline

|
|

’vider

© Krste Asanovic, 2015

Commit
Point

35

In-Order Superscalar Pipeline

BIT o l_
= P)
- §

Dual
Decode |

Inst.
Mem

GPRs

| FPRs

= Fetch two instructions per cycle; issue both
simultaneously if one is integer/memory
and other is floating point

= |nexpensive way of increasing throughput,

examples include Alpha 21064 (1992) & o
MIPS R5000 series (1996) - nPpelined
= Same idea can be extended to wider issue FDi
by duplicating functional units (e.g. 4-issue u Commit
UltraSPARC & Alpha 21164) but regfile ports Point

and bypassing costs grow quickly

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015 36

Acknowledgements

= This course is partly inspired by previous MIT 6.823
and Berkeley C5252 computer architecture courses

created by my collaborators and colleagues:
— Arvind (MIT)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)

CS252, Fall 2015, Lecture 4 © Krste Asanovic, 2015

37

