CS252 Graduate Computer Architecture
Fall 2015
Lecture 3: CISC versus RISC

Krste Asanovic
krste@eecs.berkeley.edu
http://inst.eecs.berkeley.edu/~cs252/fal5

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

Instruction Set Architecture (ISA)

= The contract between software and hardware

= Typically described by giving all the programmer-visible state
(registers + memory) plus the semantics of the instructions
that operate on that state

= |BM 360 was first line of machines to separate ISA from
implementation (aka. microarchitecture)

= Many implementations possible for a given ISA
- E.g., the Soviets build code-compatible clones of the IBM360, as did
Amdahl after he left IBM.
- E.g.2., today can buy AMD or Intel processors that run x86 ISA.
— E.g.3: many cellphones use ARM ISA with implementations from many
different companies including Apple, Qualcomm, Samsung, etc.

= We use Berkeley RISC-V 2.0 as standard ISA in class

- WWW.riscv.org

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

Control versus Datapath

= Processor designs can be split between datapath, where numbers
are stored and arithmetic operations computed, and control,
which sequences operations on datapath

Control

= Biggest challenge for early

T nstruction, G bR e

ndition? computer designers was getting

Datapath
PC
Inst. Reg

N

Atu

control circuitry correct

= Maurice Wilkes invented the
idea of microprogramming to
design the control unit of a

processor for EDSAC-II, 1958

Busy? Afdress IData

— Foreshadowed by Babbage’s

Main Memory

“Barrel” and mechanisms in
earlier programmable calculators

CS252, Fall 2015, Lecture 3

© Krste Asanovic, 2015

Microcoded CPU

/ \L Next State
uPC e T T

Microcode ROM
(holds fixed pucode
instructions)

!

Decoder

Busy?
Opcode
Condition

v Control Lines

Address TData

\'4 \'4

Main Memory
(holds user program written in macroinstructions, e.g., x86, RISC-V)

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

Technology Influence

= When microcode appeared in 50s, different

technologies for:
— Logic: Vacuum Tubes
— Main Memory: Magnetic cores
— Read-Only Memory: Diode matrix, punched metal cards,...

= Logic very expensive compared to ROM or RAM
= ROM cheaper than RAM
= ROM much faster than RAM

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

Microcoded CPU

/ \L Next State
uPC e T T

Microcode ROM
(holds fixed pucode
instructions)

!

Decoder

Busy?
Opcode
Condition

v Control Lines

Address TData

\'4 \'4

Main Memory
(holds user program written in macroinstructions, e.g., x86, RISC-V)

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

Single Bus Datapath for Microcoded RISC-V

Opcode 9_-, Condition? BUSV?
RS > 1 =
- | T v S =
2 | & T \J v o) I s
= (a'es
= g RegSel I T 2 > 7
vV | T Address o < v
4 v \K
o = & . 2
Zillel £ & - g
C O = O b ' >_,D S Main
o| | © e 4o <[[N<H
2 o | & ¢ .| | Memory
= E & I — < &
3| |~ o e >
—| L— Data Out In A\ - | _/
I -
<
ImmEWRegEni é; T ALUE#{ I\/IemEngi

Microinstructions written as register transfers:

= MA:=PC means RegSel=PC; RegW=0; RegEn=1; MALd=1

= B:=Reg[rs2] means RegSel=rs2; RegW=0; RegEn=1; BLd=1

= Reg[rd]:=A+B means ALUop=Add; ALUEn=1; RegSel=rd; RegW=1

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015 7

RISC-V Instruction Execution Phases

* Instruction Fetch

* Instruction Decode

= Register Fetch

= ALU Operations

= Optional Memory Operations

= Optional Register Writeback

= Calculate Next Instruction Address

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

Instruction Fetch:

ALU:

ALUI:

CS252, Fall 2015, Lecture 3

Microcode Sketches (1)

MA,A:=PC

PC:=A+4

wait for memory
IR:=Mem

dispatch on opcode

A:=Reg|rs1]
B:=Reg[rs2]
Reg[rd]:=ALUOp(A,B)
goto instruction fetch

A:=Reg|rs1]

B:=Imml //Sign-extend 12b immediate
Reg[rd]:=ALUOp(A,B)

goto instruction fetch

© Krste Asanovic, 2015

LW:

JAL:

Branch:

CS252, Fall 2015, Lecture 3

Microcode Sketches (2)

A:=Reg|rs1]

B:=Imml //Sign-extend 12b immediate
MA:=A+B

wait for memory

Reg[rd]:=Mem

goto instruction fetch

Reg[rd]:=A // Store return address

A:=A-4 // Recover original PC

B:=ImmJ // Jump-style immediate

PC:=A+B

goto instruction fetch

A:=Reg|rs1]

B:=Reg[rs2]

if (IALUOp(A,B)) goto instruction fetch //Not taken
A:=PC //Microcode fall through if branch taken
A:=A-4

B:=ImmB// Branch-style immediate

PC:=A+B

goto instruction fetch

© Krste Asanovic, 2015

10

Pure ROM Implementation

Opcaode Conf? Busy?

—] IJ.PC — —] —]

v v Voo

\ J

f

Address

ROM
Data

Next uPC lControI Signals

= How many address bits?
|paddress| = |uPC|+|opcode|+ 1+ 1

= How many data bits?
|data| = |uPC|+]|control signals| = [uPC| + 18
= Total ROM size = 2|uaddress|y | data |

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

11

Pure ROM Contents

Address | Data

uPC Opcode Cond? Busy? | Control Lines Next uPC
fetchO X X X | MA,A:=PC fetchl
fetchl X X 1 | fetchl
fetchl X X 0 | IR:=Mem fetch2
fetch2 ALU X X | PC:=A+4 ALUO
fetch2 ALUI X X | PC:=A+4 ALUIO
fetch2 LW X X | PC:=A+4 LWO
ALUO X X X | A:=Reg[rs1] ALU1
ALU1 X X X | B:=Reg[rs2] ALU2
ALU2 X X X | Reg[rd]:=ALUOp(A,B) fetchO

CS252, Fall 2015, Lecture 3

© Krste Asanovic, 2015

12

Single-Bus Microcode RISC-V ROM Size

= Instruction fetch sequence 3 common steps
= ~12 instruction groups

= Each group takes ~5 steps (1 for dispatch)

= Total steps 3+12*5 =63, needs 6 bits for uPC

= Opcode is 5 bits, ~18 control signals

= Total size = 2(6+5+2)x(6+18)=213x24 = ~25KB!

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

13

Reducing Control Store Size

= Reduce ROM height (#address bits)

— Use external logic to combine input signals
— Reduce #states by grouping opcodes

= Reduce ROM width (#data bits)

— Restrict uPC encoding (next,dispatch,wait on memory,...)
— Encode control signals (vertical pcoding, nanocoding)

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

14

Single-Bus RISC-V Microcode Engine

Opcode fetchO

Decode l
! h
>\]

v
] UPC +|1
Cond?—>{ uPC Jump Address
Busy? Logic ROM
Data
UPC jump lControI Signals

HUPC jump = next | spin | fetch | dispatch | ftrue | ffalse

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

15

UPC Jump Types

= next increments puPC

= spin waits for memory

= fetch jumps to start of instruction fetch

= dispatch jumps to start of decoded opcode group
= fture/ffalse jumps to fetch if Cond? true/false

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

16

Encoded ROM Contents

Address | Data

UPC | Control Lines Next uPC
fetchO | MA,A:=PC next
fetchl | IR:=Mem spin
fetch2 | PC:=A+4 dispatch
ALUO | A:=Reg[rs1] next
ALU1 | B:=Reg[rs2] next
ALU2 | Reg[rd]:=ALUOp(A,B) fetch
BranchO | A:=Reg[rs1] next
Branchl | B:=Reg[rs2] next
Branch2 | A:=PC ffalse
Branch3 | A:=A-4 next
Branch4 | B:=ImmB next
Branch5 | PC:=A+B fetch

CS252, Fall 2015, Lecture 3

© Krste Asanovic, 2015

17

Implementing Complex Instructions

Memory-memory add: M[rd] = M][rs1] + M][rs2]

Address | Data
UPC | Control Lines Next uPC
MMAO | MA:=Reg[rs1] next
MMA1 | A:=Mem spin
MMA2 | MA:=Reg[rs2] next
MMA3 | B:=Mem spin
MMA4 | MA:=Reg[rd] next
MMADS | Mem:=ALUOp(A,B) spin
MMAG6 | fetch

Complex instructions usually do not require datapath modifications, only
extra space for control program

Very difficult to implement these instructions using a hardwired controller
without substantial datapath modifications

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

18

Horizontal vs Vertical uCode

— Bits per pulnstruction

pinstructions

1 | ¥

* Horizontal pcode has wider pinstructions
— Multiple parallel operations per pinstruction
— Fewer microcode steps per macroinstruction
— Sparser encoding = more bits

= Vertical pcode has narrower pinstructions

— Typically a single datapath operation per pinstruction
— separate pinstruction for branches

— More microcode steps per macroinstruction
— More compact => less bits
= Nanocoding
— Tries to combine best of horizontal and vertical pcode

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015 1 9

Exploits recurring control
signal patterns in pcode,

e.g.,
ALUO A < Reg[rs1]

ALUIO A <— Reg|[rs1]

Nanocoding

uPC (state) pcode
next-state
pnaddress
icode ROM

nanoaddress

nanoinstruction ROM
data

ERERRERN

= Motorola 68000 had 17-bit pcode containing either 10-

bit jump or 9-bit nanoinstruction pointer
— Nanoinstructions were 68 bits wide, decoded to give 196

control signals

CS252, Fall 2015, Lecture 3

© Krste Asanovic, 2015

20

IBM 360: Initial Implementations

Model 30 . Model 70
Storage 8K - 64 KB 256K - 512 KB
Datapath 8-bit 64-bit
Circuit Delay 30 nsec/level 5 nsec/level
Local Store Main Store Transistor Registers
Control Store Read only 1usec Conventional circuits

IBM 360 instruction set architecture (ISA) completely hid the

underlying technological differences between various models.

Milestone: The first true ISA designed as portable hardware-
software interface!

With minor modifications it still survives today!

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

21

Microprogramming in IBM 360

M30 M40 M50 M65
Datapath width (bits) 8 16 32 64
pinst width (bits) 50 52 85 87
pcode size (K pinsts) 4 4 2.75 2.75
pstore technology CCROS| TCROS BCROS| BCROS
pstore cycle (ns) 750 625 500 200
memory cycle (ns) 1500 2500 2000 750
Rental fee (SK/month) 4 7 15 35

= Only the fastest models (75 and 95) were hardwired

CS252, Fall 2015, Lecture 3

© Krste Asanovic, 2015

22

Microcode Emulation

= |[BM initially miscalculated the importance of software
compatibility with earlier models when introducing
the 360 series

= Honeywell stole some IBM 1401 customers by
offering translation software (“Liberator”) for
Honeywell H200 series machine

= |IBM retaliated with optional additional microcode for
360 series that could emulate IBM 1401 ISA, later
extended for IBM 7000 series

— one popular program on 1401 was a 650 simulator, so
some customers ran many 650 programs on emulated
1401s

— (650 simulated on 1401 emulated on 360)

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

Microprogramming thrived in ‘60s and ‘70s

= Significantly faster ROMs than DRAMs were available

* For complex instruction sets, datapath and controller
were cheaper and simpler

= New instructions, e.g., floating point, could be
supported without datapath modifications

= Fixing bugs in the controller was easier

= |[SA compatibility across various models could be
achieved easily and cheaply

Except for the cheapest and fastest machines, all
computers were microprogrammed

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015 24

Microprogramming: early Eighties

Evolution bred more complex micro-machines
— Complex instruction sets led to need for subroutine and call stacks in
pcode
— Need for fixing bugs in control programs was in conflict with read-only
nature of uUROM
— =»Writable Control Store (WCS) (B1700, QMachine, Intel i432, ...)

With the advent of VLS| technology assumptions about ROM &
RAM speed became invalid >more complexity

Better compilers made complex instructions less important.
Use of numerous micro-architectural innovations, e.g.,
pipelining, caches and buffers, made multiple-cycle execution
of reg-reg instructions unattractive

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

25

Writable Control Store (WCS)

= Implement control store in RAM not ROM
- MOS SRAM memories now almost as fast as control store (core
memories/DRAMs were 2-10x slower)
— Bug-free microprograms difficult to write

= User-WCS provided as option on several minicomputers
— Allowed users to change microcode for each processor

= User-WCS failed

— Little or no programming tools support

— Difficult to fit software into small space

— Microcode control tailored to original ISA, less useful for others
— Large WCS part of processor state - expensive context switches
— Protection difficult if user can change microcode

— Virtual memory required restartable microcode

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

26

Analyzing Microcoded Machines

= John Cocke and group at IBM
— Working on a simple pipelined processor, 801, and advanced compilers
inside IBM
— Ported experimental PL.8 compiler to IBM 370, and only used simple
register-register and load/store instructions similar to 801
— Code ran faster than other existing compilers that used all 370
instructions! (up to 6MIPS whereas 2MIPS considered good before)

= Emer, Clark, at DEC
— Measured VAX-11/780 using external hardware
— Found it was actually a 0.5MIPS machine, although usually assumed to
be a 1IMIPS machine
— Found 20% of VAX instructions responsible for 60% of microcode, but
only account for 0.2% of execution time!

= VAX8800
— Control Store: 16K*147b RAM, Unified Cache: 64K*8b RAM
— 4.5x more microstore RAM than cache RAM!

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

“lron Law” of Processor Performance

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

= [nstructions per program depends on source
code, compiler technology, and ISA

= Cycles per instructions (CPI) depends on ISA and
uarchitecture

= Time per cycle depends upon the parchitecture
and base technology

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

28

CPI for Microcoded Machine

7 cycles 5 cycles 10 cycles
A A A
[Inst 1 V' nst2 Y Inst 3)

(LI TTTTTTITITTTTTITTT]

Time ——

Total clock cycles = 7+5+10 = 22
Total instructions = 3
CPI=22/3=7.33

CPl is always an average over a large
number of instructions.

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

29

IC Technology Changes Tradeoffs

= Logic, RAM, ROM all implemented using MOS
transistors
= Semiconductor RAM ~ same speed as ROM

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

30

Nanocoding

QY (PC

Exploits ecurring control L\)Q%ate)] ucode
signal patterns in pcode, I e next-state
e.g., . Gao\\ _‘ ‘

“ WM
ALU, A < Reglrs1] \ S e
nanoada = . l oo‘ —
ALUi, A < Reglrs1] OG

sANNRENEN

= MC68000 had 17-bit pcode containing either 10-bit

Ljump or 9-bit nanoinstruction pointer
— Nanoinstructions were 68 bits wide, decoded to give 196

control signals

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

From CISC to RISC

» Use fast RAM to build fast instruction cache of user-

visible instructions, not fixed hardware microroutines
— Contents of fast instruction memory change to fit what
application needs right now

= Use simple ISA to enable hardwired pipelined

implementation

— Most compiled code only used a few of the available CISC
instructions
— Simpler encoding allowed pipelined implementations

» Further benefit with integration

— In early ‘80s, could finally fit 32-bit datapath + small caches
on a single chip
— No chip crossings in common case allows faster operation

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015 32

Berkeley RISC Chips

K
A LT R TR

O
r

RISC-I (1982) Contains 44,420
transistors, fabbed in 5 um
NMOS, with a die area of 77 mm?,
ran at 1 MHz. This chip is probably
the first VLSI RISC.

1

CmE

{
) |
o
i
\
|
i
t
|
|
o '
1
A
|
\
\
1
i
(EEos
|
1
i |l
I
o I
\
\
| l
t
{
| l
i
i

QLA (T Aravral Ak

¥

| < RISC-II (1983) contains 40,760
< transistors, was fabbed in 3
5. um NMOS, ran at 3 MHz, and
the size is 60 mm?Z.

Stanford built some too...
33

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

Microprogramming is far from extinct

= Played a crucial role in micros of the Eighties
— DEC uVAX, Motorola 68K series, Intel 286/386

= Plays an assisting role in most modern micros
- e.g., AMD Bulldozer, Intel Ivy Bridge, Intel Atom, IBM
PowerP(C, ...
— Most instructions executed directly, i.e., with hard-wired
control
- Infrequently-used and/or complicated instructions invoke
microcode

= Patchable microcode common for post-fabrication
bug fixes, e.g. Intel processors load pcode patches at
bootup

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015 34

Acknowledgements

= This course is partly inspired by previous MIT 6.823
and Berkeley CS252 computer architecture courses

created by my collaborators and colleagues:
— Arvind (MIT)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)

CS252, Fall 2015, Lecture 3 © Krste Asanovic, 2015

35

