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Today’s lecture plan ...

Pareto Optimality ... and how it 
impacts your project.

Power and energy.  The techniques 
you’ll be able to use in your project.

Accelerator interface ... and its limits.

Starting points.  Brief descriptions of 
projects ideas you may want to pursue.

Break
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Power techniques available for project

Power-down idle transistors

Parallelism and pipelining 

Slow down non-critical paths

Clock gating

Thermal management

Data-dependent processing
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Gate delay 
roughly linear 

with Vdd 

The main trick: Top block processes “left”, bottom “right”.
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Multiple Supply

Voltages

Logic Block
Freq = 1

Vdd  = 1

Throughput = 1

Power = 1

Area = 1 

Pwr Den = 1

Vdd

Logic Block

Freq = 0.5

Vdd  = 0.5

Throughput = 1

Power = 0.25

Area = 2

Pwr Den = 0.125

Vdd/2

Logic Block

Replicated Designs

CV2  power only

P ~ #blks ⨯  F  ⨯ Vdd 2

P ~    2   ⨯ 1/2 ⨯ 1/4 = 1/4 

Cell libraries characterized 
at multiple Vdd values.
So, you can pick a different 
Vdd value for each of your 
implementations.

Several Vdd values in one 
implementation not supported.
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Not by varying Vdd, but by cell choice

From “The circuit and physical design of the POWER4 microprocessor”, IBM J 
Res and Dev, 46:1, Jan 2002, J.D. Warnock et al.

netlist. Of these, 121 713 were top-level chip global nets,
and 21 711 were processor-core-level global nets. Against
this model 3.5 million setup checks were performed in late
mode at points where clock signals met data signals in
latches or dynamic circuits. The total number of timing
checks of all types performed in each chip run was
9.8 million. Depending on the configuration of the timing
run and the mix of actual versus estimated design data,
the amount of real memory required was in the range
of 12 GB to 14 GB, with run times of about 5 to 6 hours
to the start of timing-report generation on an RS/6000*
Model S80 configured with 64 GB of real memory.
Approximately half of this time was taken up by reading
in the netlist, timing rules, and extracted RC networks, as

well as building and initializing the internal data structures
for the timing model. The actual static timing analysis
typically took 2.5–3 hours. Generation of the entire
complement of reports and analysis required an additional
5 to 6 hours to complete. A total of 1.9 GB of timing
reports and analysis were generated from each chip timing
run. This data was broken down, analyzed, and organized
by processor core and GPS, individual unit, and, in the
case of timing contracts, by unit and macro. This was one
component of the 24-hour-turnaround time achieved for
the chip-integration design cycle. Figure 26 shows the
results of iterating this process: A histogram of the final
nominal path delays obtained from static timing for the
POWER4 processor.

The POWER4 design includes LBIST and ABIST
(Logic/Array Built-In Self-Test) capability to enable full-
frequency ac testing of the logic and arrays. Such testing
on pre-final POWER4 chips revealed that several circuit
macros ran slower than predicted from static timing. The
speed of the critical paths in these macros was increased
in the final design. Typical fast ac LBIST laboratory test
results measured on POWER4 after these paths were
improved are shown in Figure 27.

Summary
The 174-million-transistor !1.3-GHz POWER4 chip,
containing two microprocessor cores and an on-chip
memory subsystem, is a large, complex, high-frequency
chip designed by a multi-site design team. The
performance and schedule goals set at the beginning of
the project were met successfully. This paper describes
the circuit and physical design of POWER4, emphasizing
aspects that were important to the project’s success in the
areas of design methodology, clock distribution, circuits,
power, integration, and timing.

Figure 25

POWER4 timing flow. This process was iterated daily during the 
physical design phase to close timing.

VIM

Timer files ReportsAsserts

Spice

Spice

GL/1

Reports

< 12 hr

< 12 hr

< 12 hr

< 48 hr

< 24 hr

Non-uplift 
timing

Noise
impact
on timing 

Uplift
analysis

Capacitance
adjust

Chipbench /
EinsTimer 

Chipbench /
EinsTimer 

Extraction

Core or chip
wiring

Analysis/update
(wires, buffers)

Notes:
• Executed 2–3 months
   prior to tape-out
• Fully extracted data
   from routed designs
   • Hierarchical extraction
• Custom logic handled
   separately
   • Dracula
   • Harmony
• Extraction done for
   • Early
   • Late

Extracted units
  (flat or hierarchical)
Incrementally
  extracted RLMs
Custom NDRs
VIMs

Figure 26

Histogram of the POWER4 processor path delays.
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Most wires have hundreds 
of picoseconds to spare.The critical path
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(H,S,L) == High Vt, Standard Vt, Low Vt

(40, 45, 50) are channel lengths (in nm)

Vdd is fixed, so cell  
choice only helps  
leakage power ...
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Basic Design Tradeoffs

• Improve on one metric at the expense of the others 
• Tradeoffs exist at every level in the system design
• Design Specification

– Functional Description
– Performance, cost, power constraints

• Designer must make the tradeoffs needed to achieve the function within the 
constraints  

• The design space is all the feasible design points (in this 3D space) 
• Examining points in that space is called “Design Space Exploration” (DSE). 
• Other secondary metrics: 

• time-to-market 
• NRE 
• upgradability/flexibility
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Design Space & Optimality (perf & cost)

Performance

Cost
low-performance at low-cost

high-performance at high-cost

“Pareto Optimal” Frontier

(# of components)

(tasks/sec)
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VLSI Design Space is 3D

9
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t
Accelerator

❑ Performance in ops/sec 
❑ Energy is ops/J 
❑ Cost in die area 

Project Objective:  Determine the Pareto Frontier for some accelerator 
design over at least 2 dimensions, using RTL and physical mapping design 

variations.  Algorithmic design alternatives time permitting.



Rocket Facts

riscv.org

http://riscv.org


Ignore

All 32 
bits show 
up here ...

Blue “1” bits 
yield register 
queuing  
shown on 
diagram ... 
the 7-bit 
funct7 field  
is accelerator’s   
128 opcodes.

“opcode”
1 1 1



Private “A-File” OpsRISC-V Regfile Ops

1 1 1 0 0 0

MOV:A-file to Regfile

1 0 0 0 1 1

MOV:Regfile to A-File

How to manage 
private 32-entry  
“A-File”  
register bank 
without using up 
opcode bits ...



D-Cache Facts

MTYPE: 
8, 16, 32, 64 bits.

CMD: Load, Store

MADDR: 
Align to MTYPE

TAG: 9-bits. Lets 
loads be OoO, up 
to 4 missed loads.

Performance: 4 cycle latency on a cache hit,  
40-60 on a miss. No prefetching built in ...

Size: 64KB L1 with 64 byte lines.
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Break

Play:
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Projects from Fall 2014
‣ Hardware Accelerator for Exact Dot Product: a coprocessor capable of 

computing a dot product exactly by use of a “complete register” (CR) that 
encodes a fixed point representation of twice the IEEE754 double precision.  
Showed that the coprocessor is realizable in silicon, requiring only 11% of the 
parent- processor’s area.  Additionally, the accelerator showed speedups of 
3-6x over a conventional dot product and matrix multiplication while providing 
both exactness and reproducibility. 

‣ Hardware-Accelerated Key Value Store:  a hardware accelerator for the 
Memcached key-value store: shows a 10x improvement in latency for 40% of 
requests without adding significant overhead to the remaining requests. 

‣ A Compile-Time and Run-Time Configurable Viterbi Decoder in Chisel 
Hardware Construction Language: accelerator outperforms pure software 
implementations in throughput by a factor of 500 to 10000. 

‣ Accelerator to Solve System of Linear Equation on A RISC-V Processor: 
Algorithm based on matrix condensation and matrix mirroring is adapted from 
the Journal of Discrete Algorithms.  Two variants of the baseline 
implementation based on parallelism and higher condensation are explored for 
performance, power, and area metric.

15
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Projects from Fall 2013
‣Power Modeling (for power estimation) 
‣Elliptic Curve Cryptography 
‣SHA3 
‣Automatic Pipelining 
‣Correlation Engine 
‣Source Routing (for NN simulation) 
‣Memory Controller 
‣DREAMER 
‣Configurable Precision (for vector unit) 
‣Convolution Engine

16



Click Prediction Acceleration



Advertisers pay Google $1.47, 
on average, if Google Search 
displays their ad in response 


to the search term 


mt fuji vacation. 



Since Google is only paid if the 
user clicks, they predict, in real 
time, which of the bidding ads 
is most likely to yield a click. 

Hawaii ad penalized.



Ad Click Prediction: a View from the Trenches
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Daniel Golovin, Sharat Chikkerur, Dan Liu, Martin Wattenberg,
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ABSTRACT
Predicting ad click–through rates (CTR) is a massive-scale
learning problem that is central to the multi-billion dollar
online advertising industry. We present a selection of case
studies and topics drawn from recent experiments in the
setting of a deployed CTR prediction system. These include
improvements in the context of traditional supervised learn-
ing based on an FTRL-Proximal online learning algorithm
(which has excellent sparsity and convergence properties)
and the use of per-coordinate learning rates.

We also explore some of the challenges that arise in a
real-world system that may appear at first to be outside
the domain of traditional machine learning research. These
include useful tricks for memory savings, methods for as-
sessing and visualizing performance, practical methods for
providing confidence estimates for predicted probabilities,
calibration methods, and methods for automated manage-
ment of features. Finally, we also detail several directions
that did not turn out to be beneficial for us, despite promis-
ing results elsewhere in the literature. The goal of this paper
is to highlight the close relationship between theoretical ad-
vances and practical engineering in this industrial setting,
and to show the depth of challenges that appear when ap-
plying traditional machine learning methods in a complex
dynamic system.

Categories and Subject Descriptors
I.5.4 [Computing Methodologies]: Pattern Recognition—
Applications

Keywords
online advertising, data mining, large-scale learning

1. INTRODUCTION
Online advertising is a multi-billion dollar industry that

has served as one of the great success stories for machine
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learning. Sponsored search advertising, contextual advertis-
ing, display advertising, and real-time bidding auctions have
all relied heavily on the ability of learned models to predict
ad click–through rates accurately, quickly, and reliably [28,
15, 33, 1, 16]. This problem setting has also pushed the
field to address issues of scale that even a decade ago would
have been almost inconceivable. A typical industrial model
may provide predictions on billions of events per day, using
a correspondingly large feature space, and then learn from
the resulting mass of data.
In this paper, we present a series of case studies drawn

from recent experiments in the setting of the deployed sys-
tem used at Google to predict ad click–through rates for
sponsored search advertising. Because this problem setting
is now well studied, we choose to focus on a series of topics
that have received less attention but are equally important
in a working system. Thus, we explore issues of memory
savings, performance analysis, confidence in predictions, cal-
ibration, and feature management with the same rigor that
is traditionally given to the problem of designing an e↵ec-
tive learning algorithm. The goal of this paper is to give the
reader a sense of the depth of challenges that arise in real
industrial settings, as well as to share tricks and insights
that may be applied to other large-scale problem areas.

2. BRIEF SYSTEM OVERVIEW
When a user does a search q, an initial set of candidate

ads is matched to the query q based on advertiser-chosen
keywords. An auction mechanism then determines whether
these ads are shown to the user, what order they are shown
in, and what prices the advertisers pay if their ad is clicked.
In addition to the advertiser bids, an important input to the
auction is, for each ad a, an estimate of P (click | q,a), the
probability that the ad will be clicked if it is shown.
The features used in our system are drawn from a vari-

ety of sources, including the query, the text of the ad cre-
ative, and various ad-related metadata. Data tends to be
extremely sparse, with typically only a tiny fraction of non-
zero feature values per example.
Methods such as regularized logistic regression are a nat-

ural fit for this problem setting. It is necessary to make
predictions many billions of times per day and to quickly
update the model as new clicks and non-clicks are observed.
Of course, this data rate means that training data sets are
enormous. Data is provided by a streaming service based on
the Photon system – see [2] for a full discussion.
Because large-scale learning has been so well studied in

recent years (see [3], for example) we do not devote signif-

Basic idea: Billions of “features” are developed to 
predict, given an ad and a search, how likely it is 
that the searcher will click on the ad.

a vector: feature values for the search.
b vector: feature values for the ad.

Example 50 features: Does geo info indicate that 
the searcher is in the state of (1) Alabama? 


(2) Alaska .... (50) Wyoming. Binary, sparse features. 
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learning. Sponsored search advertising, contextual advertis-
ing, display advertising, and real-time bidding auctions have
all relied heavily on the ability of learned models to predict
ad click–through rates accurately, quickly, and reliably [28,
15, 33, 1, 16]. This problem setting has also pushed the
field to address issues of scale that even a decade ago would
have been almost inconceivable. A typical industrial model
may provide predictions on billions of events per day, using
a correspondingly large feature space, and then learn from
the resulting mass of data.
In this paper, we present a series of case studies drawn

from recent experiments in the setting of the deployed sys-
tem used at Google to predict ad click–through rates for
sponsored search advertising. Because this problem setting
is now well studied, we choose to focus on a series of topics
that have received less attention but are equally important
in a working system. Thus, we explore issues of memory
savings, performance analysis, confidence in predictions, cal-
ibration, and feature management with the same rigor that
is traditionally given to the problem of designing an e↵ec-
tive learning algorithm. The goal of this paper is to give the
reader a sense of the depth of challenges that arise in real
industrial settings, as well as to share tricks and insights
that may be applied to other large-scale problem areas.

2. BRIEF SYSTEM OVERVIEW
When a user does a search q, an initial set of candidate

ads is matched to the query q based on advertiser-chosen
keywords. An auction mechanism then determines whether
these ads are shown to the user, what order they are shown
in, and what prices the advertisers pay if their ad is clicked.
In addition to the advertiser bids, an important input to the
auction is, for each ad a, an estimate of P (click | q,a), the
probability that the ad will be clicked if it is shown.
The features used in our system are drawn from a vari-

ety of sources, including the query, the text of the ad cre-
ative, and various ad-related metadata. Data tends to be
extremely sparse, with typically only a tiny fraction of non-
zero feature values per example.
Methods such as regularized logistic regression are a nat-

ural fit for this problem setting. It is necessary to make
predictions many billions of times per day and to quickly
update the model as new clicks and non-clicks are observed.
Of course, this data rate means that training data sets are
enormous. Data is provided by a streaming service based on
the Photon system – see [2] for a full discussion.
Because large-scale learning has been so well studied in

recent years (see [3], for example) we do not devote signif-

To rank each ad: Take the dot product of a and b


for each ad, give the highest-valued ads placement.

“n” here is in the billions, but non-zero “a” and “b” 
values are in the thousands.  This real-time system 
needs to exploit the sparsity to perform well.

A good candidate problem for an accelerator.



One Instruction

SBDT dest_reg, a_reg, b_reg
a_reg: Holds 64-bit memory address  
pointing to the first byte of “a” list.
b_reg: Holds 64-bit memory address  
pointing to the first byte of “b” list.

dest_reg: 

32-bit unsigned int
# of list elements. 
saturating 16-bit 
unsigned ints.
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Cramer’s Rule

Solve this  
matrix equation:

With determinants:

To solve for xi: 
Substitute b for 
column i in the 
numerator ...



Useful?

Recent work shows how to make Cramer’s 
rule scale and be stable for large systems:

JID:JDA AID:386 /FLA [m3G; v 1.58; Prn:9/08/2011; 10:05] P.1 (1-12)
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A condensation-based application of Cramer’s rule for solving large-scale
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State-of-the-art software packages for solving large-scale linear systems are predominantly
founded on Gaussian elimination techniques (e.g. LU-decomposition). This paper presents
an efficient framework for solving large-scale linear systems by means of a novel utilization
of Cramer’s rule. While the latter is often perceived to be impractical when considered
for large systems, it is shown that the algorithm proposed retains an O(N3) complexity
with pragmatic forward and backward stability properties. Empirical results are provided
to substantiate the stated accuracy and computational complexity claims.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Systems of linear equations are central to many science and engineering application domains. Fast linear solvers generally
use a form of Gaussian elimination [8], the most common of which is LU-decomposition. The latter involves a computation
complexity of WLU ≈ 2

3 N3 [11], where N denotes the number of linearly independent columns in a matrix. The factor

2 accounts for one addition and one multiplication. If only multiplications are considered, then WLU ≈ N3

3 , which is the
operation count sometimes quoted in the literature.

In most implementations of Gaussian elimination, the row with the largest lead value and the first row are interchanged
during each reduction. This is referred to as partial pivoting and facilitates the minimization of truncation errors. Historically,
Cramer’s rule has been considered inaccurate when compared to these methods. As this paper will discuss, the perceived
inaccuracy does not originate from Cramer’s rule but rather from the method utilized for obtaining determinants.

This paper revisits Cramer’s rule [4] and introduces an alternative framework to the traditional LU-decomposition meth-
ods offering similar computational complexity and storage requirements. To the best of the authors’ knowledge, this is the
first work to demonstrate such characterization. In utilizing a technique similar to partial pivoting to calculate determinant
values, the algorithm’s stability properties are derived and shown to be comparable to LU-decomposition for asymmetric
systems.

The rest of this paper is structured as follows. Section 2 describes the algorithm and presents its computational com-
plexity. Section 3 discusses the stability of the algorithm including forward and backward error analysis. Section 4 presents
empirical results to support the proposed complexity assertions. Finally, a brief discussion and drawn conclusions are pro-
vided in Section 5.

* Corresponding author.
E-mail addresses: habgood@eecs.utk.edu (K. Habgood), itamar@eecs.utk.edu (I. Arel).

1570-8667/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2011.06.007
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Fig. 2. Algorithm execution times compared to those obtained using Matlab(TM).

The theoretical number of floating point operations (FLOPS) to complete a 1000 × 1000 matrix based on the complexity
calculation is roughly 1555 million. The actual measured floating point operations for the algorithm summed to 1562.466
million. This equates to an estimated 758 MFLOPS. The Matlab algorithm measured 733 MFLOPS based on the measured
execution time and theoretical number of operations for LU decomposition.

5. Conclusions

To the best of our knowledge, this is the first paper outlining how Cramer’s rule can be applied in a scalable manner.
It introduces a novel methodology for solving large-scale linear systems. Unique utilization of Cramer’s rule and matrix
condensation techniques yield an elegant process that has promise for parallel computing architectures. Implementation
results support the theoretical claims that the accuracy and computational complexity of the proposed algorithm are similar
to LU-decomposition.
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So, let’s make an accelerator based on it ...



Observations

Determinants of matrices with integer 
coefficients can be computed exactly, 
with only integer multiplies and adds.  
So, we restrict our accelerator accordingly.

Determinant works on a matrix, but returns 
a scalar.  We use accelerator instructions 
to compute determinants, and let RISC-V 
compute the x vector by doing the divides.

by 

accelerator

by RISC-V



Chió's Trick

For n = 3, 
computes 
determinant 
of a 3 x 3 
matrix by 
computing  
the 2 x 2 
determinant 
of four 2 x 2 
determinant 
results.

We can reuse the “leaf” 2x2  
determinants when we compute 

the full set of det(Ai) and det(A). 

Can be ignored (cancels out of Ax=b)



Reuse

              | (a11 a22 - a12 a21)   (a11 a23 - a13 a21) | 
det A = |                                                                   | 
	          | (a11 a32 - a12 a31)   (a11 a33 - a13 a31) |

                | (a11 b2  - b1  a21)   (a11 a23 - a13 a21) | 
det A2 = |                                                                 | 
	            | (a11 b3  - b1  a31)   (a11 a33 - a13 a31) |

                | (a11 a22 - a12 a21)   (a11 b2  - b1  a21) | 
det A3 = |                                                                 | 
	            | (a11 a32 - a12 a31)   (a11 b3  - b1  a31) |

Color 
coding 
shows 
reuse.

Implicit 
architected 
state for the 
accelerator 
can be used 
to store and 
reuse partial 
results ...



Two instructions

DETA dest_reg, a_reg, len_reg
a_reg: 64-bit memory address of A matrix.

len_reg: Holds the n of the n x n A matrix.
dest_reg: Return register for det(A).

First, it clears all implicit state

Retains n and partial results for A.

DETAI dest_reg, b_reg, col_reg
b_reg: 64-bit memory address of b vector.

col_reg: The “i” (column) for det(Ai) 
dest_reg: Return register for det(Ai).

Adds to  partial results (for Ai).



   

 

Seamlessly Interfacing MEMS Microphones with Blackfin® Processors (EE-350) Page 3 of 10 

band low-pass decimation filters to take out the high frequency noise introduced in the sigma delta 
modulation process and the further decimation. This EE-Note demonstrates a way to achieve a seamless 
interface between a Blackfin processor and the MEMS microphones by implementing the above-
mentioned filter functionalities in software. 

4 System Level Design  
A system level block diagram of the set up is shown in Figure 3 below. The data coming out of the 
microphone is sent to the decimation process, which consists of three parts: a CIC decimation filter 
converting 1-bit PDM data to framed data, followed by two 2:1 half band filters and an FIR filter in the 
final stage eliminating the high frequency noise generated in the sigma delta modulation process in the 
Microphone. The reconstructed audio is sent to a DAC for audio output purpose.  

 
Figure 3. Interfacing two MEMS microphones to a Blackfin processor 

4.1 Hardware Interface 

The ADMP421 MEMS microphone is interfaced to the Blackfin processor over the Serial Port (SPORT). 
The microphones can drive the PDM data on either rising edge or falling edge of the clock based on the 
logic level at the L/R select pin. Interfacing a single microphone to the DSP is straightforward. All that 
needs to be done is to provide the same clock (in the range of 1 to 3 MHz) to the microphone and the 
SPORT and receive the PDM data into the processor from the SPORT, while keeping the L/R pin tied to 
GND or VDD. To connect two such microphones to a single serial port data line, the L/R select pin of one 
microphone has to be grounded. The L/R select pin of the other microphone must be connected to VDD. 
This ensures that the microphones drive data on opposite edges of clock. To make the SPORT receive data 
from both microphones, the microphones have to be clocked at half the rate of the clock at which the 
SPORT Rx is running. Either an external clock source or the SPORT itself can generate these clocks. The 
microphone modulates audio signals with respect to the clock fed to it. 

4.2 Software Routines 

The frequency of the PDM data output from the microphone (which is the clock input to the microphone) 
must be a multiple of the final audio output needed from the system. For example, in the current 
implementation, we are doing a decimation of 32; for the output rate of 96 kHz, we need to provide a 
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5 Experimental Results  
The experimental set up consists of two MEMS microphones. Both microphones are connected to the 
Blackfin SPORT interface. The ADSP-BF533 EZ-KIT Lite® evaluation platform has been selected for 
interfacing to the microphones. Having said this, any of the existing Blackfin evaluation boards can be 
used for this same purpose. 
The microphones are clocked at 3.072 MHz, while the SPORT receives the data at 6.144 MHz. The data 
stream is operated on by a divided-by-8 CIC decimator and the received PDM data is being sent out in 13-
bit framed data at 384 kHz. This is followed by two 2:1 FIR half-band decimators. The final stage is a 
low-pass FIR at 96 kHz.   
To have the complete real-time implementation of the algorithm, the availability of descriptor-based DMA 
option in the Blackfin processor proved to be handy. For more information on the implementation, refer to 
the code associated with this EE-Note. 

With the Blackfin core running at 594 MHz, Table 1 provides the number of clock cycles required to 
execute the various filters per sample, corresponding to a one-microphone interface and a two-microphone 
interface:  

Table 1. Blackfin core clock cycles to perform filter operations 

The figures below show the PDM data taken from the microphone after feeding it with the sine tone and 
the waveforms at every stage of the decimation process. The figures are taken from a VisualDSP++® plot 
window. 

 

 
Figure 8. PDM data coming out of microphone  

 
Figure 9. Output of the CIC decimation stage 

Filters Number of Core Clock Cycles for One 
Microphone Interface 

Number of Core Clock Cycles for 
Two-Microphone Interfaces 

Divided-by-8 CIC decimator 560 1320 

25 tap half-band 2:1 decimator 20 20 

FIR low-pass filters with 300 taps 36 36 

MEMS microphone 


post-processing 

accelerator
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A 280 mV-to-1.1 V 256b Reconfigurable SIMD
Vector Permutation Engine With 2-Dimensional

Shuffle in 22 nm Tri-Gate CMOS
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Sanu K. Mathew, Member, IEEE, Himanshu Kaul, Member, IEEE, Farhana Sheikh, Member, IEEE, and
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Abstract—An ultra-low voltage reconfigurable 4-way to 32-way
SIMD vector permutation engine is fabricated in 22 nm tri-gate
bulk CMOS, consisting of a 32-entry 256b 3-read/1-write ported
register file with a 256b byte-wise any-to-any permute crossbar for
2-dimensional shuffle. The register file integrates a vertical shuffle
across multiple entries into read/write operations, and includes
clock-less static reads with shared P/N dual-ended transmission
gate (DETG) writes, improving register file by 250 mV
across PVT variations with a wide dynamic operating range of
280 mV-1.1 V. The permute crossbar implements an interleaved
folded byte-wise multiplexer layout forming an any-to-any fully
connected tree to perform a horizontal shuffle with permute accu-
mulate circuits, and includes vector flip-flops, stacked min-delay
buffers, shared gates, and ultra-low voltage split-output (ULVS)
level shifters improving logic by 150 mV, while enabling
peak energy efficiency of 585 GOPS/W measured at 260 mV,
50 C. The permutation engine achieves: (i) nominal register
file performance of 1.8 GHz, 106 mW measured at 0.9 V, 50 C,
(ii) robust register file functionality measured down to 280 mV
with peak energy efficiency of 154 GOPS/W, (iii) scalable permute
crossbar performance of 2.9 GHz, 69 mW measured at 1.1 V,
50 C with sub-threshold operation at 240 mV, 10 MHz consuming
19 W, and (iv) a 64b 4 4 matrix transpose algorithm and AoS
to SoA conversion with 40%–53% energy savings and 25%–42%
improved peak throughput measured at 1.8 GHz, 0.9 V.

Index Terms—Single instruction multiple data (SIMD), vector
processing, , near-threshold voltage (NTV), ultra-low
voltage, register file, permutation, crossbar, flip-flop, level shifter.

I. INTRODUCTION

E NERGY-EFFICIENT SIMD permutation operations are
key for maximizing high-performance microprocessor

vector datapath utilization in multimedia, graphics, and signal
processing workloads [1]–[3]. These applications require
increasingly concurrent execution of arithmetic/memory oper-
ations to deliver high performance/Watt in power-constrained
microprocessors and SoC’s. Many microprocessor instruc-
tion set architectures have been increasing the SIMD vector
bit-width (MMX, SSE, AVX) to achieve improvement on such
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Fig. 1. SIMD vector width trend.

workloads (Fig. 1) [4]–[6]. Moreover, SIMD computations
require a multitude of pre-processing or rearrangement in-
structions to parallelize data before any useful computation is
performed [7]–[9]. The trend of increased SIMD vector width
and pre-processing parallel data elements motivates the need for
an optimized permute crossbar for fixed-length short-bit-width
integer and single/double-precision floating-point sub-words.
An any-to-any permute crossbar is needed to keep execution
units fully utilized, since a reduced subset of shuffle patterns
typically result in overheads of redundant and unnecessary
permutation operations [10]–[12]. Furthermore, a wide, flex-
ible SIMD vector permutation engine is required to achieve
high-throughput data rearrangement operations on large data
sets, improving performance, power and area.
Lowering supply voltage is one of the strongest techniques to

improve energy efficiency of high-performance multi-core mi-
croprocessors and SoC’s. Processors operating at ultra-low and
subthreshold voltages have been demonstrated for niche appli-
cations with low throughput requirements [13]–[16]. Though
ultra-low voltage operation can significantly improve energy
efficiency and reduce power consumption [17]–[19], the nec-
essary design optimizations required to enable robust opera-
tion at ultra-low voltages in the presence of magnified perfor-
mance variations should ideally impose minimal area, power
and performance overheads at the nominal supply. SIMD per-
mutation engines, targeted for integration in power-constrained
microprocessors and SoC’s, require both high-performance at
the nominal supply and energy-efficient robust performance in
the presence of increased variation at ultra-low supply voltages.
The active minimum operating supply voltage ( is lim-
ited by the effect of parameter variation on register files and
logic, and degrades with technology scaling due to: a) increase
in variation, b) sub-par scaling of the minimum device width,
and c) increase in PMOS strength relative to NMOS. can
be improved by upsizing critical devices or adding a separate
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ABSTRACT
Distributed in-memory key-value stores, such as memcached, are
central to the scalability of modern internet services. Current
deployments use commodity servers with high-end processors.
However, given the cost-sensitivity of internet services and the
recent proliferation of volume low-power System-on-Chip (SoC)
designs, we see an opportunity for alternative architectures. We
undertake a detailed characterization of memcached to reveal
performance and power inefficiencies. Our study considers
both high-performance and low-power CPUs and NICs across
a variety of carefully-designed benchmarks that exercise the
range of memcached behavior. We discover that, regardless
of CPU microarchitecture, memcached execution is remarkably
inefficient, saturating neither network links nor available memory
bandwidth. Instead, we find performance is typically limited by
the per-packet processing overheads in the NIC and OS kernel—
long code paths limit CPU performance due to poor branch
predictability and instruction fetch bottlenecks.

Our insights suggest that neither high-performance nor low-
power cores provide a satisfactory power-performance trade-off,
and point to a need for tighter integration of the network interface.
Hence, we argue for an alternate architecture—Thin Servers
with Smart Pipes (TSSP)—for cost-effective high-performance
memcached deployment. TSSP couples an embedded-class low-
power core to a memcached accelerator that can process GET
requests entirely in hardware, offloading both network handling
and data look up. We demonstrate the potential benefits of our
TSSP architecture through an FPGA prototyping platform, and
show the potential for a 6X-16X power-performance improvement
over conventional server baselines.

1. INTRODUCTION
Internet services are increasingly relying on software architec-

tures that enable rapid scale-out over clusters of thousands of
servers to manage rapid growth. As the volume of data that must
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be processed at interactive speeds increases, only such scale-out
architectures can maintain performance and availability with sus-
tainable costs in light of hardware failures. Due to their large scale,
efficiency is of particular concern for numerous services (e.g., web
search, social media, video sharing, web email, collaborative edit-
ing, and social games).

Distributed in-memory key-value stores, such as memcached,
have become a central piece of infrastructure to allow online
services to scale, with some services relying on thousands
of memcached servers (e.g., Facebook [27], Zynga, Twitter,
YouTube). Today, operators use the same commodity high-end
servers for their memcached clusters as for other aspects of their
software infrastructure. However, in light of recent trends enabling
cost-effective volume low-power System-on-Chip (SoC) designs
and several prior studies advocating embedded-class CPUs in the
data center [5, 24, 31], we perceive an opportunity to consider new
architectures for memcached.

To discover performance- and power-efficiency bottlenecks, we
undertake a detailed architectural characterization of memcached.
Our study considers both high-performance and low-power
CPUs and network interfaces (NICs), and measures a variety
of carefully-designed benchmarks that explore the range of
memcached behavior. We develop a load-testing methodology
and infrastructure to allow us to reproduce precisely-controlled
object size, popularity, and load distributions to mimic the traffic
a memcached server receives from a large client cluster.

Our characterization paints a frustrating picture—neither high-
performance (Xeon-class) nor current low-power (Atom-class)
multi-core systems provide appealing cost-performance scaling
trends. We discover that, regardless of CPU microarchitecture,
memcached execution is remarkably inefficient, saturating neither
network links nor available memory bandwidth (we estimate that
more than 64 Xeon-class cores are needed to saturate a 10Gb
Ethernet link assuming perfect multicore software scalability).
Instead, we find performance is typically limited by the per-
packet processing overheads in the NIC and OS kernel. Front-
end (branch prediction and fetch) stalls are a key performance
bottleneck across CPU microarchitectures. Despite the small
codebase of memcached itself, frequent trips into the TCP/IP
stack, kernel, and library code result in poor instruction supply due
to ICache misses, virtual memory (VM) translation overheads and
poor branch predictability. ICache and ITLB performance are often
an order of magnitude worse relative to benchmarks commonly
used for microarchitecture design (e.g., SPEC). Furthermore, large
last-level caches seem to provide little benefit. Conversely, we
find that advanced NIC features that optimize packet hand-off from

6EEE TRANSACTIONS ON COMPUTERS, VOL. c-34, NO. 7, JULY 1985

Correspondence.

Systolic Sorting on a Mesh-Connected Network

HANS-WERNER LANG, MANFRED SCHIMMLER,
HARTMUT SCHMECK, AND HEIKO SCHRODER

Abstrat -A parallel algorithm for sorting n data items in O(\/-) steps
is presented. Its simple structure and the fact that it needs local commu-
nication only make it suitable for an implementation in VLSI technology.
The algorithm is based on a merge algorithm that merges four subfiles
stored in a mesh-connected processor array. This merge algorithm is
composed of the perfect shuffle and odd-even-transposition sort. For the
VLSI implementation a systolic version of the algorithm is presented. The
area and time complexities for a bit-serial and a bit-parallel version of this
implementation are analyzed.

Index Terms - Odd-even-transposition sort, mesh-connected processor
array, perfect shuffle, sorting, systolic array, VLSI algorithms, VLSI
complexity.

I. INTRODUCTION
VLSI technology allows the integration of a large number of

simple processing elements on a single chip. This creates a need for
algorithms exploiting the potentially high degree of parallelism in
networks of such processing elements.

In this correspondence we present an algorithm for sorting n data
items on a x \/ mesh-connected processor array that requires
O(O-§) comparison steps and O(V-) unit-distance routing steps (n
is assumed to be a power of 4). The algorithm has a very simple
structure and needs only local communication between the pro-
cessors. Therefore, it is well suited for an implementation in VLSI.
Q(&-V) is a lower bound for sorting n elements on a mesh-

connected processor array (see Section II). There are other algo-
rithms of time complexity O(V¶) [6], [10], [12], but they are much
more complex in their structure than our algorithm. Simpler algo-
rithms like the odd-even-transposition sort [5], the bitonic merge
sort [1], the rebound sorter [3], or the zero time sorter [9] require
time fQ(n).

In Section II some requirements concerning the design of VLSI
algorithms are discussed. Our new sorting algorithm and the proof
of its validity are presented in Section III. In Section IV the algo-
rithm is slightly modified to improve its time performance. In Sec-
tions II-IV we operate with an array of "processors" -logic units
having one data register and being able to execute a sequence of
different instructions. In Section V a systolic version of the algo-
rithm is presented. In this version the processors are replaced by
simple "processing cells," executing always the same operation,
and the data items are "pumped" through this array of cells. The
structure of these cells, for the bit-serial and the bit-parallel case, is
briefly outlined in Section VI.

II. MODEL OF COMPUTATION
There are some properties a "good" VLSI algorithm should

have [4].
1) It can be implemented by only a few types of simple

processors.
2) Its data and control flow is simple and regular so that the
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processors can be connected by a network with local and regular
interconnections only.

3) It uses extensive pipelining and parallel processing.
As usual, VLSI hardware is modeled by communication graphs.

The first such graph we consider for our algorithm is a grid of
A/;; x \/¶ identical processors, each of which is connected with its
four direct neighbors (Fig. 1). During the sorting process, every
processor contains one data item in its register. Observe that there
are situations where two elements initially loaded at the opposite
corners of the array have to be interchanged. Since even for this
simple transposition at least 2\/¶ - 2 local exchange steps are
needed, no algorithm on such a mesh-connected processor array
can sort n data items in less than f(IfV') steps.

Standard VLSI complexity measures are the time (T), the period
(P), the chip area (A) of an algorithm, and combinations of these
like AT, AT2, or ATP (see [13]). There are different opinions on
how to weight the time for long-distance communication on the
chip [2], [13]. The analysis of algorithms on a processor grid is
independent of these differences because all interconnections have
constant length.

III. THE SORTING ALGORITHM
Our sorting algorithm is composed of the shuffle operation and

of odd-even-transposition sort.
The shuffle operation transforms a sequence z1,.*, Z2n into its

perfect shuffle zl, zn1 , Z2, Zn+2, * , Zn, Z2n [11]. This operation can
be realized by n - 1 parallel local exchange steps (see Section V).

Odd-even-transposition sort can be described as follows.
Let zl, .* , Zn be a sequence of n elements to be sorted. In the

odd (respectively, even) step of the algorithm, all elements zi of the
sequence having an odd (respectively, even) subscript are compared
with their successors and exchanged if zi > zi+l (i E {1, ,
n - 1}). The odd and even steps are executed in alternating order.
After at most n steps the sequence is sorted. A simple proof of this
can be found in [8].
Example 1: Sorting the sequence 6 5 2 3 4 1 by odd-even-

transposition sort is shown in Fig. 2. A "-" indicates a comparison-
exchange. After six steps the sequence is sorted.
We now give an algorithm for merging four arrays of size

k/2 x k/2 where k is a power of 2 and the elements of each array
are in snake-like ordering (Fig. 3).
Algorithm MERGE

A: Shuffle in each row of the k x k array, i.e., interchange the
columns according to the perfect shuffle [Fig. 4(a)].,

B: Sort all double columns, i.e., all k x 2 subarrays into snake-
like ordering using 2k steps of odd-even-transposition sort
[Fig. 4(b)].

C: Apply 2k steps of odd-even-transposition sort to the whole
k x k array, assuming a snake-like ordering [Fig. 4(c)].

For the time complexity analysis we assume t, to be the time
required by one comparison-exchange step and te ' t, to be the
time required by a simple exchange step.

Part A requires (k/2 - 1)te time units. For part B we need 2k
comparison-exchange steps, i.e., the time 2kt,. Part C requires
2kt, time units. Thus, the time needed to merge four k/2 x k/2
arrays is

TM(k) = 4kt, + (k/2 - 1)te - 4.5kt,
Example 2: Consider the 4 x 4 array in Fig. 5(a) consisting of

four 2 x 2 arrays sorted in snake-like ordering. Part A is an inter-
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ABSTRACT
This paper focuses on the trade-off between flexibility and effi-
ciency in specialized computing. We observe that specialized units
achieve most of their efficiency gains by tuning data storage and
compute structures and their connectivity to the data-flow and data-
locality patterns in the kernels. Hence, by identifying key data-flow
patterns used in a domain, we can create efficient engines that can
be programmed and reused across a wide range of applications.

We present an example, the Convolution Engine (CE), special-
ized for the convolution-like data-flow that is common in compu-
tational photography, image processing, and video processing ap-
plications. CE achieves energy efficiency by capturing data reuse
patterns, eliminating data transfer overheads, and enabling a large
number of operations per memory access. We quantify the trade-
offs in efficiency and flexibility and demonstrate that CE is within a
factor of 2-3x of the energy and area efficiency of custom units op-
timized for a single kernel. CE improves energy and area efficiency
by 8-15x over a SIMD engine for most applications.

Categories and Subject Descriptors
C.5.4 [Computer Systems Implementation]: VLSI Systems—
Customization, Heterogeneous CMP; C.1.3 [Processor Architec-
tures]: Other Architecture Styles—Heterogeneous (Hybrid) Sys-
tems

General Terms
Algorithms, Performance, Computational Photography

Keywords
Convolution, H.264, Demosaic, Specialized Computing, Energy
Efficiency, Tensilica, Computational Photography

1. INTRODUCTION
The slowdown of voltage scaling has made all chips energy lim-

ited: the energy per transistor switch now scales slower than the
number of transistors per chip. Paradoxically, we must use these
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additional transistors to reduce the number of transistors switched
in each operation to improve energy efficiency. The primary way
to achieve this goal is to create application specific accelerators to
remove the overhead of predicting, fetching, decoding, scheduling,
and committing instructions in a normal processor [7, 20, 31]. Ac-
celerators provide as much as three orders of magnitude improve-
ments in compute efficiency over general-purpose processors. Het-
erogeneous chips combining processors and accelerators already
dominate mobile systems [4, 2] and are becoming increasingly com-
mon in server and desktop systems [17, 10]. Large specialized
units perform hundreds of operations for each data and instruction
fetch, reducing energy waste of programmable cores by two orders
of magnitude [20]. Significant research is now focusing on auto-
matic generation of specialized units from high-level descriptions
or templates in order to reduce design costs [27, 13, 31, 19, 26].

This paper explores the energy cost of making a more general
accelerator, one which can be user programmed. Current accel-
erators, whether designed manually or automatically generated, are
typically optimized for a single kernel, and if configurable, are con-
figured by experts in firmware. Clearly it would be better to create
units that are specialized enough to reach close to ASIC compute
efficiency, but retain some of the flexibility and reuse advantages of
programmable cores.

An example of a programmable accelerator prevalent in embed-
ded and desktop processors is the SIMD unit which targets data-
parallel algorithms. However, SIMD units are still one to two or-
ders of magnitude less efficient compared to algorithm-specific cus-
tom units [20]. This paper shows that it is possible to build more
efficient programmable accelerators by exploiting the fact that spe-
cialized units achieve most of their efficiency gains by tuning data
storage structures to the data-flow and data-locality requirements
of the kernel. This tuning eliminates redundant data transfers and
facilitates creation of closely coupled datapaths and storage struc-
tures allowing hundreds of low-energy operations to be performed
for each instruction and data fetched. Hence, if we identify data-
flow and data locality patterns that are common to a wide range of
kernels within a domain, we can create specialized units that are
highly energy efficient, but can be programmed and reused across
a wide range of applications.

We concentrate on computational photography, image process-
ing, and video processing applications that are popular on mo-
bile systems. We find that a common motif is a convolution-like
data flow: apply a function to a stencil of the data, then perform
a reduction, then shift the stencil to include a small amount of
new data, and repeat. Examples include demosaic, feature extrac-
tion and mapping in scale-invariant-feature-transform (SIFT), win-
dowed histograms, median filtering, motion estimation for H.264
video processing and many more. In contrast to the current solu-
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Abstract-We introduce generalized finite automata as a tool for specification of bi-level images. We 
describe an inference algorithm for generalized finite automata and a lossy compression system for bi-level 
and simple color images based on this algorithm and vector quantization. 0 1997 Elsevier Science Ltd 

1. INTRODUCTION 

A bi-level multiresolution image is specified by 
assigning the value 0 or 1 to every node of the 
infinite quadtree. If the outgoing edges of each node 
of the quadtree are labeled 0, 1, 2, 3, we get a 
uniquely labeled path to every node; its label is called 
the address of the node. The address of a node at 
depth k is a string of length k over the alphabet {0, 1, 
2, 3}. Hence, a bi-level multiresolution image can be 
specified as a subset of strings over the alphabet {0, 
1, 2, 3}, namely the collection of the addresses of the 
nodes assigned value 1 (black). Regular sets of 
strings are specified by finite automata or regular 
expressions [l]. Therefore, finite automata can be 
used to specify (regular) multiresolution images. This 
idea has been recognized independently by several 
authors [2-6], but has not led to a successful image- 
data compression method. 

The finite automata method of image-specification 
has been extended to gray-scale images, represented 
by Weighted Finite Automata (WFA) [7, 81. A 
theoretical WFA inference algorithm was proposed 
in [8]. This algorithm finds a WFA with the minimal 
number of states for an image which can be perfectly 
(without error) represented by a WFA. However, for 
realistic images (photographs), which must be 
approximated, this algorithm infers automata with 
many edges (transitions) and it is not useful for 
image compression. In [9] a recursive algorithm for 
WFA-inference was proposed (see also [lo]); based 
on this algorithm a (lossy) image-data compression 
method has been developed which gives an excellent 
relation between the image quality and the compres- 
sion rate. It also has additional advantages: it works 
well for the widest variety of images, and it allows 
zooming and many other image transformations to 
be done easily on compressed images. That is, we can 
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decode a part of an image, its filtered version, etc. 
without decoding the original image (see [1 l-131). 

The objective of our work is to design a lossy 
compression method for bi-level images based on 
finite automata which, at least for silhouette-like 
images, would have an excellent quality to compres- 
sion rate ratio. The first idea was to modify the 
successful algorithm from [9]. That, however, would 
not work since the important property of WFA is 
that the WFA with underlying nondeterministic 
automata are more powerful than ‘deterministic’ 
WFA. For example, the linearly sloping grayness 
function can be implemented by a two state 
Lnondeterministic’ WFA, but not by any ‘determi- 
nistic’ one. The recursive algorithm from [9] effi- 
ciently finds the best way to express every ‘subsquare 
image’ as a linear combination of the existing states 
(images) and thus takes advantage of the nondeter- 
minism of WFA. 

For bi-level images the situation is quite different. 
It is well known that nondeterministic finite auto- 
mata define the same (regular) sets as deterministic 
[ 11, even if the nondeterministic automaton might be 
much smaller than the equivalent deterministic 
automaton. Because our experiments have shown 
that nondeterminism does not cause a substantial 
increase in the quality to compression rate ratio for 
bi-level images, and it is expensive in terms of the 
running time, our algorithm proposed here is 
completely different from the algorithm for gray- 
scale images in [9], in particular, it is not recursive. 
The resulting automaton is deterministic, but it is a 
generalized finite automaton. We introduce new 
features into the automata that allow a briefer 
description of an image and thus higher compression 
without further degradation of quality. 

If a (classical) deterministic finite automaton ,4 
represents an image Z, then each state of A must 
correspond to a subsquare of Z, with the initial state 
corresponding to the whole Z. Moreover, if there is a 
transition from state i to state j labeled by 0 (1,2,3), 
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