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What do Computer Architects 
need to know about physics?

‣ Physics effect:  
Area ⇒ cost 
Delay ⇒ performance 
Energy ⇒ performance & cost 

• Ideally, zero delay, area, and energy.  However, the 
physical devices occupy area, take time, and consume 
energy. 

• CMOS process lets us build transistors, wires, 
connections, and we get capacitors, inductors, and 
resistors whether or not we want them.

2



CS250, UC Berkeley Sp16Lecture 04, Timing

Physical Layout

‣ “Switch-level” abstraction gives a good way to 
understand the function of a circuit. 
‣ nFET (g=1 ? short circuit : open) 
‣ pFET (g=0 ? short circuit : open) 

‣ Understanding delay means going below the switch-level 
abstraction to transistor physics and layout details.
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“Models should be as simple as possible,  
  but no simpler ...”        Albert Einstein.
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“Gate Delay”

‣ Modern CMOS gate delays on the order of 
a few picoseconds. (However, highly 
dependent on gate context.) 

‣ Often expressed as FO4 delays (fan-out of 
4) - as a process independent delay metric:  
‣ the delay of an inverter, driven by an 

inverter 4x smaller than itself, and 
driving an inverter 4x larger than itself. 

‣ For a 90nm process FO4 is around 20ps.  
Should be less than 10ps for our 32nm 
process.
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http://en.wikipedia.org/wiki/Inverter_(logic_gate)


CS250, UC Berkeley Sp16Lecture 04, Timing

“Path Delay”

‣ For correct operation: 
Total Delay ≤ clock_period - FFsetup_time - FFclk_to_q - Clock_skew 
on all paths. 

6

‣ High-speed processors critical paths have around 20 FO4 
delays.
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FO4 Delays per clock period 

Francois Labonte
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1

CPU DB: Recording  
Microprocessor History 

With this open database, you can mine microprocessor trends over the past 40 years.

Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, Mark Horowitz, Stanford University 

In November 1971, Intel introduced the world’s first single-chip microprocessor, the Intel 4004. 
It had 2,300 transistors, ran at a clock speed of up to 740 KHz, and delivered 60,000 instructions 
per second while dissipating 0.5 watts. The following four decades witnessed exponential growth 
in compute power, a trend that has enabled applications as diverse as climate modeling, protein 
folding, and computing real-time ballistic trajectories of angry birds. Today’s microprocessor chips 
employ billions of transistors, include multiple processor cores on a single silicon die, run at clock 
speeds measured in gigahertz, and deliver more than 4 million times the performance of the original 
4004. 

Where did these incredible gains come from? This article sheds some light on this question by 
introducing CPU DB (cpudb.stanford.edu), an open and extensible database collected by Stanford’s 
VLSI (very large-scale integration) Research Group over several generations of processors (and 
students). We gathered information on commercial processors from 17 manufacturers and placed it 
in CPU DB, which now contains data on 790 processors spanning the past 40 years.

In addition, we provide a methodology to separate the effect of technology scaling from 
improvements on other frontiers (e.g., architecture and software), allowing the comparison of 
machines built in different technologies. To demonstrate the utility of this data and analysis, we use 
it to decompose processor improvements into contributions from the physical scaling of devices, and 
from improvements in microarchitecture, compiler, and software technologies. 

AN OPEN REPOSITORY OF PROCESSOR SPECS
While information about current processors is easy to find, it is rarely arranged in a manner that is 
useful to the research community. For example, the data sheet may contain the processor’s power, 
voltage, frequency, and cache size, but not the pipeline depth or the technology minimum feature 
size. Even then, these specifications often fail to tell the full story: a laptop processor operates over a 
range of frequencies and voltages, not just the 2 GHz shown on the box label. 

Not surprisingly, specification data gets harder to find the older the processor becomes, 
especially for those that are no longer made, or worse, whose manufacturers no longer exist. We 
have been collecting this type of data for three decades and are now releasing it in the form of an 
open repository of processor specifications. The goal of CPU DB is to aggregate detailed processor 
specifications into a convenient form and to encourage community participation, both to leverage 
this information and to keep it accurate and current. CPU DB (cpudb. stanford.edu)  is populated 
with desktop, laptop, and server processors, for which we use SPEC13 as our performance-measuring 
tool. In addition, the database contains limited data on embedded cores, for which we are using 
the CoreMark benchmark for performance.5 With time and help from the community, we hope to 
extend the coverage of embedded processors in the database. 

PROCESSORS

1

CPU DB: Recording  
Microprocessor History 

With this open database, you can mine microprocessor trends over the past 40 years.

Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, Mark Horowitz, Stanford University 

In November 1971, Intel introduced the world’s first single-chip microprocessor, the Intel 4004. 
It had 2,300 transistors, ran at a clock speed of up to 740 KHz, and delivered 60,000 instructions 
per second while dissipating 0.5 watts. The following four decades witnessed exponential growth 
in compute power, a trend that has enabled applications as diverse as climate modeling, protein 
folding, and computing real-time ballistic trajectories of angry birds. Today’s microprocessor chips 
employ billions of transistors, include multiple processor cores on a single silicon die, run at clock 
speeds measured in gigahertz, and deliver more than 4 million times the performance of the original 
4004. 

Where did these incredible gains come from? This article sheds some light on this question by 
introducing CPU DB (cpudb.stanford.edu), an open and extensible database collected by Stanford’s 
VLSI (very large-scale integration) Research Group over several generations of processors (and 
students). We gathered information on commercial processors from 17 manufacturers and placed it 
in CPU DB, which now contains data on 790 processors spanning the past 40 years.

In addition, we provide a methodology to separate the effect of technology scaling from 
improvements on other frontiers (e.g., architecture and software), allowing the comparison of 
machines built in different technologies. To demonstrate the utility of this data and analysis, we use 
it to decompose processor improvements into contributions from the physical scaling of devices, and 
from improvements in microarchitecture, compiler, and software technologies. 

AN OPEN REPOSITORY OF PROCESSOR SPECS
While information about current processors is easy to find, it is rarely arranged in a manner that is 
useful to the research community. For example, the data sheet may contain the processor’s power, 
voltage, frequency, and cache size, but not the pipeline depth or the technology minimum feature 
size. Even then, these specifications often fail to tell the full story: a laptop processor operates over a 
range of frequencies and voltages, not just the 2 GHz shown on the box label. 

Not surprisingly, specification data gets harder to find the older the processor becomes, 
especially for those that are no longer made, or worse, whose manufacturers no longer exist. We 
have been collecting this type of data for three decades and are now releasing it in the form of an 
open repository of processor specifications. The goal of CPU DB is to aggregate detailed processor 
specifications into a convenient form and to encourage community participation, both to leverage 
this information and to keep it accurate and current. CPU DB (cpudb. stanford.edu)  is populated 
with desktop, laptop, and server processors, for which we use SPEC13 as our performance-measuring 
tool. In addition, the database contains limited data on embedded cores, for which we are using 
the CoreMark benchmark for performance.5 With time and help from the community, we hope to 
extend the coverage of embedded processors in the database. 

1985 1990 1995 201020052000 2015

140

120

100

80

60

40

20

0

F0
4 

/ c
yc

le
F04 Delays Per Cycle for Processor Designs

FO4 delay per cycle is roughly proportional to the amount of computation completed per cycle.



CS250, UC Berkeley Sp16Lecture 04, Timing

“Gate Delay”
‣ What determines the actual delay of a logic gate? 
‣ Transistors are not perfect switches - cannot change 

terminal voltages instantaneously. 
‣ Consider the NAND gate: 

‣ Current (I) value depends on: process parameters, transistor 
size

9

‣ CL models gate output, wire, inputs to next stage (Cap. of Load) 
‣ C “integrates” I creating a voltage change at output 

∆ ∝ CL / I
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More on transistor Current
‣ Transistors act like a cross between a resistor and 

“current source”

10

‣ ISAT depends on process parameters (higher for nFETs than for  
pFETs) and transistor size (layout):

ISAT ∝ W/L 
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Transistors as water valves.
If electrons are water molecules, 

transistor strengths (W/L) are pipe diameters, 
and capacitors are buckets ...

A “on” p-FET fills
up the capacitor 

with charge. 
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Delay Model:

CMOS
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Review: General C/L Cell Delay Model

° Combinational Cell (symbol) is fully specified by:
• functional (input -> output) behavior

- truth-table, logic equation, VHDL

• load factor of each input

• critical propagation delay from each input to each output for each 
transition

- THL(A, o) = Fixed Internal Delay + Load-dependent-delay x load 

° Linear model composes

Cout

Vout

Cout

Delay

Va -> Vout

X
X

X

X

X

X

Ccritical

delay per unit load

A

B

X

.

.

.

Combinational

Logic Cell

Internal Delay
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Basic Technology: CMOS

° CMOS: Complementary Metal Oxide Semiconductor
• NMOS (N-Type Metal Oxide Semiconductor) transistors

• PMOS (P-Type Metal Oxide Semiconductor) transistors

° NMOS Transistor
• Apply a HIGH (Vdd) to its gate

turns the transistor into a “conductor”

• Apply a LOW (GND) to its gate
shuts off the conduction path

° PMOS Transistor
• Apply a HIGH (Vdd) to its gate

shuts off the conduction path

• Apply a LOW (GND) to its gate
turns the transistor into a “conductor”

Vdd = 5V

GND = 0v

Vdd = 5V

GND = 0v
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Basic Components: CMOS Inverter

Vdd

Circuit

° Inverter Operation

OutIn

Symbol
PMOS

NMOS

In Out

Vdd

Open

Charge

Vout
Vdd

Vdd

Out

Open

Discharge

Vin

Vdd

Vdd

A “on” n-FET 
empties the bucket.
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Basic Components: CMOS Inverter

Vdd

Circuit

° Inverter Operation

OutIn

Symbol
PMOS

NMOS

In Out

Vdd

Open

Charge

Vout
Vdd

Vdd

Out

Open

Discharge

Vin

Vdd
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This model is often good enough ...

(Cartoon physics)
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More on CL
‣ Everything that connects to the output of a logic gate (or 

transistor) contributes capacitance:

12

‣ Transistor 
drains 

‣ Interconnection 
(wires/
contacts/vias) 

‣ Transistor Gates

I
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What is the bucket?  A gate’s “fan-out”.

Driving other gates slows a gate down.

Spring 2003 EECS150 – Lec10-Timing Page 10

Gate Switching Behavior

• Inverter:

• NAND gate:

Driving wires slows a gate down.

“Fan-out”:  The number of gate inputs 
driven by a gate’s output.

Driving it’s own parasitics slows a gate down.
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A closer look at fan-out ...
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Series Connection

Vdd

Cout

Vout

C1

V1
G2

Vdd

Voltage

Vdd

Vin

GND

V1 Vout

Vdd/2

d1 d2

G1

V1Vin Vout

Vin
G1 G2

Time

° Total Propagation Delay = Sum of individual delays = d1 + d2

° Capacitance C1 has two components:

• Capacitance of the wire connecting the two gates

• Input capacitance of the second inverter
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Calculating Aggregate Delays

Vdd

G2

Vdd

° Sum delays along serial paths

° Delay (Vin -> V2) ! = Delay (Vin -> V3)
• Delay (Vin -> V2) = Delay (Vin -> V1) + Delay (V1 -> V2)

• Delay (Vin -> V3) = Delay (Vin -> V1) + Delay (V1 -> V3)

° Critical Path = The longest among the N parallel paths

° C1 = Wire C + Cin of Gate 2 + Cin of Gate 3

V2

V1Vin V2

G1
V1

C1

Vin

Vdd

G3
V3

V3
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Characterize a Gate

° Input capacitance for each input

° For each input-to-output path:
• For each output transition type (H->L, L->H, H->Z, L->Z ... etc.)

- Internal delay (ns)

- Load dependent delay (ns / fF)

° Example: 2-input NAND Gate

OutA

B

Delay A -> Out

Out: Low -> High

0.5ns

Slope =

0.0021ns / fF

For A and B: Input Load (I.L.) = 61 fF

For either A -> Out  or  B -> Out:

Tlh = 0.5ns Tlhf = 0.0021ns / fF

Thl = 0.1ns Thlf = 0.0020ns / fF

Cout

1/28/04 ©UCB Spring 2004
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A Specific Example: 2 to 1 MUX

Y = (A and !S) 

or  (B and S)

A

B

S

Gate 3

Gate 2

Gate 1
Wire 1

Wire 2

Wire 0

A

B

Y

S

2
 x

 1
M

u
x

° Input Load (I.L.)
• A, B: I.L. (NAND) = 61 fF 

• S: I.L. (INV) + I.L. (NAND) = 50 fF + 61 fF  =  111 fF

° Load Dependent Delay (L.D.D.):  Same as Gate 3
• TAYlhf = 0.0021 ns / fF         TAYhlf = 0.0020 ns / fF

• TBYlhf = 0.0021 ns / fF         TBYhlf = 0.0020 ns / fF

• TSYlhf = 0.0021 ns / fF         TSYlhf = 0.0020 ns / fF

Linear model 
works for 

reasonable
fan-out
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Gate Delay

• Fan-out:

• The delay of a gate is proportional to its output capacitance.  Because, 
gates #2 and 3 turn on/off at a later time.  (It takes longer for the output 
of gate #1 to reach the switching threshold of gates #2 and 3 as we add 
more output capacitance.)

1

3

2

Delay time of an inverter  
driving 4 inverters. 

FO4: Fanout of  
four delay.

Driving more 
gates adds 
delay.
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Gate Delay

• Fan-out:

• The delay of a gate is proportional to its output capacitance.  Because, 
gates #2 and 3 turn on/off at a later time.  (It takes longer for the output 
of gate #1 to reach the switching threshold of gates #2 and 3 as we add 
more output capacitance.)

1

3

2
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Gate Delay

• Fan-out:

• The delay of a gate is proportional to its output capacitance.  Because, 
gates #2 and 3 turn on/off at a later time.  (It takes longer for the output 
of gate #1 to reach the switching threshold of gates #2 and 3 as we add 
more output capacitance.)

1

3

2
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Wires
‣ So far, simple capacitors:

15

C ∝ Area = width ∗ length

‣ Wires have finite resistance, so have distributed R and C:

with r = res/length, c = cap/length,  ∆ ∝ rcL2 ≅ rc + 2rc +3rc + ...
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Wire Delay

• Even in those cases where the 

transmission line effect is 

negligible:

– Wires posses distributed 

resistance and capacitance

– Time constant associated with 

distributed RC is proportional to 

the square of the length

• For short wires on ICs, 

resistance is insignificant 

(relative to effective R of 

transistors), but C is important.

– Typically around half of C of 

gate load is in the wires.

• For long wires on ICs:

– busses, clock lines, global 

control signal, etc.

– Resistance is significant, 

therefore distributed RC effect 

dominates.

– signals are typically “rebuffered” 

to reduce delay:
v1

v4
v3

v2

time

v1 v2 v3 v4
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Wires

16

‣ For short wires (between gates) R is insignificant:             
(total wire RC delay << total gate delay) 

‣ For long wires R becomes significant.  Ex: busses, clocks, reset 
‣ “rebuffering” helps
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Wire Delay

• Even in those cases where the 

transmission line effect is 

negligible:

– Wires posses distributed 

resistance and capacitance

– Time constant associated with 

distributed RC is proportional to 

the square of the length

• For short wires on ICs, 

resistance is insignificant 

(relative to effective R of 

transistors), but C is important.

– Typically around half of C of 

gate load is in the wires.

• For long wires on ICs:

– busses, clock lines, global 

control signal, etc.

– Resistance is significant, 

therefore distributed RC effect 

dominates.

– signals are typically “rebuffered” 

to reduce delay:
v1

v4
v3

v2

time

v1 v2 v3 v4

‣ Finding the correct number and spacing requires solving a 
quadratic optimization problem.  Tradeoff fixed delay 
(overhead) of buffers with RC wire delay. 
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Turning Rise/Fall Delay into Gate Delay
• Cascaded gates:

“transfer curve” for inverter.

17

1 11 10 0 0 0
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Driving Large Loads
‣ Large fanout nets: clocks, resets, memory bit lines, off-chip 
‣ Relatively small driver results in long rise time (and thus 

large gate delay) 

‣ Strategy: 

‣ Optimal trade-off between delay per stage and total number 
of stages ⇒ fanout of ∼4-6 per stage

18

Staged Buffers
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Recall: Positive edge-triggered flip-flop

D Q A flip-flop “samples” right before the 
edge, and then “holds” value.

Spring 2003 EECS150 – Lec10-Timing Page 14

Delay in Flip-flops

• Setup time results from delay 

through first latch.

• Clock to Q delay results from 

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

Sampling 
circuit
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Delay in Flip-flops

• Setup time results from delay 

through first latch.

• Clock to Q delay results from 

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

Holds 
value

16 Transistors:  Makes an SRAM look compact!
What do we get for the 10 extra transistors?  

Clocked logic semantics.
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Sensing: When clock is low

D Q
A flip-flop “samples” right before the 

edge, and then “holds” value.
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Delay in Flip-flops

• Setup time results from delay 

through first latch.

• Clock to Q delay results from 

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

Sampling 
circuit

Spring 2003 EECS150 – Lec10-Timing Page 14

Delay in Flip-flops

• Setup time results from delay 

through first latch.

• Clock to Q delay results from 

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

Holds 
value

Spring 2003 EECS150 – Lec10-Timing Page 14

Delay in Flip-flops

• Setup time results from delay 

through first latch.
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delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk
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clk’
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Delay in Flip-flops

• Setup time results from delay 

through first latch.

• Clock to Q delay results from 

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

clk = 0 
clk’ = 1

Will capture new 
value on posedge.

Outputs last 
value captured.
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Capture: When clock goes high

D Q
A flip-flop “samples” right before the 

edge, and then “holds” value.
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Delay in Flip-flops

• Setup time results from delay 

through first latch.

• Clock to Q delay results from 

delay through second latch.
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Sampling 
circuit
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Delay in Flip-flops

• Setup time results from delay 

through first latch.

• Clock to Q delay results from 

delay through second latch.
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clk’

clk’

clk

clk’

Spring 2003 EECS150 – Lec10-Timing Page 14

Delay in Flip-flops

• Setup time results from delay 

through first latch.

• Clock to Q delay results from 

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

clk = 1 
clk’ = 0

Remembers value  
just captured.

Outputs value 
just captured.
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Flip Flop delays:

D Q
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Delay in Flip-flops
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• Clock to Q delay results from 

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’
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• Clock to Q delay results from 

delay through second latch.
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Sense D, but Q
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Fig. 1. Process SEM cross section.

The process was raised from [1] to limit standby power.

Circuit design and architectural pipelining ensure low voltage

performance and functionality. To further limit standby current

in handheld ASSPs, a longer poly target takes advantage of the

versus dependence and source-to-body bias is used

to electrically limit transistor in standby mode. All core

nMOS and pMOS transistors utilize separate source and bulk

connections to support this. The process includes cobalt disili-

cide gates and diffusions. Low source and drain capacitance, as

well as 3-nm gate-oxide thickness, allow high performance and

low-voltage operation.

III. ARCHITECTURE

The microprocessor contains 32-kB instruction and data

caches as well as an eight-entry coalescing writeback buffer.

The instruction and data cache fill buffers have two and four

entries, respectively. The data cache supports hit-under-miss

operation and lines may be locked to allow SRAM-like oper-

ation. Thirty-two-entry fully associative translation lookaside

buffers (TLBs) that support multiple page sizes are provided

for both caches. TLB entries may also be locked. A 128-entry

branch target buffer improves branch performance a pipeline

deeper than earlier high-performance ARM designs [2], [3].

A. Pipeline Organization

To obtain high performance, the microprocessor core utilizes

a simple scalar pipeline and a high-frequency clock. In addition

to avoiding the potential power waste of a superscalar approach,

functional design and validation complexity is decreased at the

expense of circuit design effort. To avoid circuit design issues,

the pipeline partitioning balances the workload and ensures that

no one pipeline stage is tight. The main integer pipeline is seven

stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is

Fig. 2. Microprocessor pipeline organization.

shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-

Timing Analysis and Logic Delay

If our clock period T > worst-case delay through CL, 
does this ensure correct operation? 
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Lec3.9

General C/L Cell Delay Model

° Combinational Cell (symbol) is fully specified by:
• functional (input -> output) behavior

- truth-table, logic equation, VHDL

• Input load factor of each input

• Propagation delay from each input to each output for each transition

- THL(A, o) = Fixed Internal Delay + Load-dependent-delay x load 

° Linear model composes

Cout

Vout

Cout

Delay

Va -> Vout

X
X

X

X

X

X

Ccritical

delay per unit load

A

B

X

.

.

.

Combinational

Logic Cell

Internal Delay
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Lec3.10

Storage Element’s Timing Model

Clk

D Q

° Setup Time: Input must be stable BEFORE trigger clock edge

° Hold Time: Input must REMAIN stable after trigger clock edge

° Clock-to-Q time:

• Output cannot change instantaneously at the trigger clock edge

• Similar to delay in logic gates, two components:

- Internal Clock-to-Q

- Load dependent Clock-to-Q

Don’t Care Don’t Care

HoldSetup

D

Unknown

Clock-to-Q

Q
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Lec3.11

Clocking Methodology

Clk

Combination Logic

.

.

.

.

.

.

.

.

.

.

.

.

° All storage elements are clocked by the same clock 
edge

° The combination logic blocks:
• Inputs are updated at each clock tick

• All outputs MUST be stable before the next clock tick
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Lec3.12

Critical Path & Cycle Time

Clk

.

.

.

.

.

.

.

.

.

.

.

.

° Critical path: the slowest path between any two storage 
devices

° Cycle time is a function of the critical path

° must be greater than:

Clock-to-Q + Longest Path through Combination Logic + Setup

Register:

An Array of 
Flip-Flops
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° Critical path: the slowest path between any two storage 
devices

° Cycle time is a function of the critical path

° must be greater than:

Clock-to-Q + Longest Path through Combination Logic + Setup

Combinational Logic



UC Regents Spring 2016  © UCBCS 250 L4: Timing

Flip-Flop delays eat into “time budget”
1600 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 11, NOVEMBER 2001

Fig. 1. Process SEM cross section.

The process was raised from [1] to limit standby power.

Circuit design and architectural pipelining ensure low voltage

performance and functionality. To further limit standby current

in handheld ASSPs, a longer poly target takes advantage of the

versus dependence and source-to-body bias is used

to electrically limit transistor in standby mode. All core

nMOS and pMOS transistors utilize separate source and bulk

connections to support this. The process includes cobalt disili-

cide gates and diffusions. Low source and drain capacitance, as

well as 3-nm gate-oxide thickness, allow high performance and

low-voltage operation.

III. ARCHITECTURE

The microprocessor contains 32-kB instruction and data

caches as well as an eight-entry coalescing writeback buffer.

The instruction and data cache fill buffers have two and four

entries, respectively. The data cache supports hit-under-miss

operation and lines may be locked to allow SRAM-like oper-

ation. Thirty-two-entry fully associative translation lookaside

buffers (TLBs) that support multiple page sizes are provided

for both caches. TLB entries may also be locked. A 128-entry

branch target buffer improves branch performance a pipeline

deeper than earlier high-performance ARM designs [2], [3].

A. Pipeline Organization

To obtain high performance, the microprocessor core utilizes

a simple scalar pipeline and a high-frequency clock. In addition

to avoiding the potential power waste of a superscalar approach,

functional design and validation complexity is decreased at the

expense of circuit design effort. To avoid circuit design issues,

the pipeline partitioning balances the workload and ensures that

no one pipeline stage is tight. The main integer pipeline is seven

stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is

Fig. 2. Microprocessor pipeline organization.

shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-

Spring 2003 EECS150 – Lec10-Timing Page 7

Example

• Parallel to serial converter: 

a

b T ! time(clk"Q) + time(mux) + time(setup)

T ! #clk"Q + #mux + #setup

clk

ALU “time budget”

Spring 2003 EECS150 – Lec10-Timing Page 8

General Model of Synchronous Circuit

• In general, for correct operation:

for all paths.

• How do we enumerate all paths?

– Any circuit input or register output to any register input or circuit 

output.

– “setup time” for circuit outputs depends on what it connects to

– “clk-Q time” for circuit inputs depends on from where it comes.

reg regCL CL

clock input

output

option feedback

input output

T ! time(clk"Q) + time(CL) + time(setup)

T ! #clk"Q + #CL + #setup
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General C/L Cell Delay Model

° Combinational Cell (symbol) is fully specified by:
• functional (input -> output) behavior

- truth-table, logic equation, VHDL

• Input load factor of each input

• Propagation delay from each input to each output for each transition

- THL(A, o) = Fixed Internal Delay + Load-dependent-delay x load 

° Linear model composes

Cout

Vout

Cout

Delay

Va -> Vout

X
X

X

X

X

X

Ccritical

delay per unit load

A

B

X

.

.

.

Combinational

Logic Cell

Internal Delay
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Lec3.10

Storage Element’s Timing Model

Clk

D Q

° Setup Time: Input must be stable BEFORE trigger clock edge

° Hold Time: Input must REMAIN stable after trigger clock edge

° Clock-to-Q time:

• Output cannot change instantaneously at the trigger clock edge

• Similar to delay in logic gates, two components:

- Internal Clock-to-Q

- Load dependent Clock-to-Q

Don’t Care Don’t Care

HoldSetup

D

Unknown

Clock-to-Q

Q
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Lec3.11

Clocking Methodology

Clk

Combination Logic

.

.

.

.

.

.

.

.

.

.

.

.

° All storage elements are clocked by the same clock 
edge

° The combination logic blocks:
• Inputs are updated at each clock tick

• All outputs MUST be stable before the next clock tick
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Lec3.12

Critical Path & Cycle Time

Clk

.

.

.

.

.

.

.

.

.

.

.

.

° Critical path: the slowest path between any two storage 
devices

° Cycle time is a function of the critical path

° must be greater than:

Clock-to-Q + Longest Path through Combination Logic + Setup

Combinational Logic
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Clock skew also eats into “time budget”

Spring 2003 EECS150 – Lec10-Timing Page 18

Clock Skew (cont.)

• If clock period T = TCL+Tsetup+Tclk!Q, circuit will fail.

• Therefore:

1. Control clock skew

a) Careful clock distribution.  Equalize path delay from clock source to all 
clock loads by controlling wires delay and buffer delay.

b) don’t “gate” clocks.

2. T " TCL+Tsetup+Tclk!Q + worst case skew.

• Most modern large high-performance chips (microprocessors) control 
end to end clock skew to a few tenths of a nanosecond.

clock skew, delay in distribution

CL

CLKCLK’

CLK

CLK’

Spring 2003 EECS150 – Lec10-Timing Page 19

Clock Skew (cont.)

• Note reversed buffer.

• In this case, clock skew actually provides extra time (adds 

to the effective clock period).

• This effect has been used to help run circuits as higher 

clock rates.  Risky business!

CL

CLK

CLK’

clock skew, delay in distribution

CLK

CLK’

As T →0, 
which circuit 

fails first?
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Clock Skew (cont.)

• If clock period T = TCL+Tsetup+Tclk!Q, circuit will fail.

• Therefore:

1. Control clock skew

a) Careful clock distribution.  Equalize path delay from clock source to all 
clock loads by controlling wires delay and buffer delay.

b) don’t “gate” clocks.

2. T " TCL+Tsetup+Tclk!Q + worst case skew.

• Most modern large high-performance chips (microprocessors) control 
end to end clock skew to a few tenths of a nanosecond.

clock skew, delay in distribution

CL

CLKCLK’

CLK

CLK’

CLKd CLKd
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Clock Skew (cont.)

• If clock period T = TCL+Tsetup+Tclk!Q, circuit will fail.

• Therefore:

1. Control clock skew

a) Careful clock distribution.  Equalize path delay from clock source to all 
clock loads by controlling wires delay and buffer delay.

b) don’t “gate” clocks.

2. T " TCL+Tsetup+Tclk!Q + worst case skew.

• Most modern large high-performance chips (microprocessors) control 
end to end clock skew to a few tenths of a nanosecond.

clock skew, delay in distribution

CL

CLKCLK’

CLK

CLK’CLKd
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the total wire delay is similar to the total buffer delay. A
patented tuning algorithm [16] was required to tune the
more than 2000 tunable transmission lines in these sector
trees to achieve low skew, visualized as the flatness of the
grid in the 3D visualizations. Figure 8 visualizes four of
the 64 sector trees containing about 125 tuned wires
driving 1/16th of the clock grid. While symmetric H-trees
were desired, silicon and wiring blockages often forced
more complex tree structures, as shown. Figure 8 also
shows how the longer wires are split into multiple-fingered
transmission lines interspersed with Vdd and ground shields
(not shown) for better inductance control [17, 18]. This
strategy of tunable trees driving a single grid results in low
skew among any of the 15 200 clock pins on the chip,
regardless of proximity.

From the global clock grid, a hierarchy of short clock
routes completed the connection from the grid down to
the individual local clock buffer inputs in the macros.
These clock routing segments included wires at the macro
level from the macro clock pins to the input of the local
clock buffer, wires at the unit level from the macro clock
pins to the unit clock pins, and wires at the chip level
from the unit clock pins to the clock grid.

Design methodology and results
This clock-distribution design method allows a highly
productive combination of top-down and bottom-up design
perspectives, proceeding in parallel and meeting at the
single clock grid, which is designed very early. The trees
driving the grid are designed top-down, with the maximum
wire widths contracted for them. Once the contract for the
grid had been determined, designers were insulated from
changes to the grid, allowing necessary adjustments to the
grid to be made for minimizing clock skew even at a very
late stage in the design process. The macro, unit, and chip
clock wiring proceeded bottom-up, with point tools at
each hierarchical level (e.g., macro, unit, core, and chip)
using contracted wiring to form each segment of the total
clock wiring. At the macro level, short clock routes
connected the macro clock pins to the local clock buffers.
These wires were kept very short, and duplication of
existing higher-level clock routes was avoided by allowing
the use of multiple clock pins. At the unit level, clock
routing was handled by a special tool, which connected the
macro pins to unit-level pins, placed as needed in pre-
assigned wiring tracks. The final connection to the fixed

Figure 6

Schematic diagram of global clock generation and distribution.
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Figure 7

3D visualization of the entire global clock network. The x and y 
coordinates are chip x, y, while the z axis is used to represent 
delay, so the lowest point corresponds to the beginning of the 
clock distribution and the final clock grid is at the top. Widths are 
proportional to tuned wire width, and the three levels of buffers 
appear as vertical lines.
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Visualization of four of the 64 sector trees driving the clock grid, 
using the same representation as Figure 7. The complex sector 
trees and multiple-fingered transmission lines used for inductance 
control are visible at this scale.
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the total wire delay is similar to the total buffer delay. A
patented tuning algorithm [16] was required to tune the
more than 2000 tunable transmission lines in these sector
trees to achieve low skew, visualized as the flatness of the
grid in the 3D visualizations. Figure 8 visualizes four of
the 64 sector trees containing about 125 tuned wires
driving 1/16th of the clock grid. While symmetric H-trees
were desired, silicon and wiring blockages often forced
more complex tree structures, as shown. Figure 8 also
shows how the longer wires are split into multiple-fingered
transmission lines interspersed with Vdd and ground shields
(not shown) for better inductance control [17, 18]. This
strategy of tunable trees driving a single grid results in low
skew among any of the 15 200 clock pins on the chip,
regardless of proximity.

From the global clock grid, a hierarchy of short clock
routes completed the connection from the grid down to
the individual local clock buffer inputs in the macros.
These clock routing segments included wires at the macro
level from the macro clock pins to the input of the local
clock buffer, wires at the unit level from the macro clock
pins to the unit clock pins, and wires at the chip level
from the unit clock pins to the clock grid.

Design methodology and results
This clock-distribution design method allows a highly
productive combination of top-down and bottom-up design
perspectives, proceeding in parallel and meeting at the
single clock grid, which is designed very early. The trees
driving the grid are designed top-down, with the maximum
wire widths contracted for them. Once the contract for the
grid had been determined, designers were insulated from
changes to the grid, allowing necessary adjustments to the
grid to be made for minimizing clock skew even at a very
late stage in the design process. The macro, unit, and chip
clock wiring proceeded bottom-up, with point tools at
each hierarchical level (e.g., macro, unit, core, and chip)
using contracted wiring to form each segment of the total
clock wiring. At the macro level, short clock routes
connected the macro clock pins to the local clock buffers.
These wires were kept very short, and duplication of
existing higher-level clock routes was avoided by allowing
the use of multiple clock pins. At the unit level, clock
routing was handled by a special tool, which connected the
macro pins to unit-level pins, placed as needed in pre-
assigned wiring tracks. The final connection to the fixed

Figure 6

Schematic diagram of global clock generation and distribution.
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clock distribution and the final clock grid is at the top. Widths are 
proportional to tuned wire width, and the three levels of buffers 
appear as vertical lines.
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Clock Tree Delays, IBM Power

clock grid was completed with a tool run at the chip level,
connecting unit-level pins to the grid. At this point, the
clock tuning and the bottom-up clock routing process still
have a great deal of flexibility to respond rapidly to even
late changes. Repeated practice routing and tuning were
performed by a small, focused global clock team as the
clock pins and buffer placements evolved to guarantee
feasibility and speed the design process.

Measurements of jitter and skew can be carried out
using the I/Os on the chip. In addition, approximately 100
top-metal probe pads were included for direct probing
of the global clock grid and buffers. Results on actual
POWER4 microprocessor chips show long-distance
skews ranging from 20 ps to 40 ps (cf. Figure 9). This is
improved from early test-chip hardware, which showed
as much as 70 ps skew from across-chip channel-length
variations [19]. Detailed waveforms at the input and
output of each global clock buffer were also measured
and compared with simulation to verify the specialized
modeling used to design the clock grid. Good agreement
was found. Thus, we have achieved a “correct-by-design”
clock-distribution methodology. It is based on our design
experience and measurements from a series of increasingly
fast, complex server microprocessors. This method results
in a high-quality global clock without having to use
feedback or adjustment circuitry to control skews.

Circuit design
The cycle-time target for the processor was set early in the
project and played a fundamental role in defining the
pipeline structure and shaping all aspects of the circuit
design as implementation proceeded. Early on, critical
timing paths through the processor were simulated in
detail in order to verify the feasibility of the design
point and to help structure the pipeline for maximum
performance. Based on this early work, the goal for the
rest of the circuit design was to match the performance set
during these early studies, with custom design techniques
for most of the dataflow macros and logic synthesis for
most of the control logic—an approach similar to that
used previously [20]. Special circuit-analysis and modeling
techniques were used throughout the design in order to
allow full exploitation of all of the benefits of the IBM
advanced SOI technology.

The sheer size of the chip, its complexity, and the
number of transistors placed some important constraints
on the design which could not be ignored in the push to
meet the aggressive cycle-time target on schedule. These
constraints led to the adoption of a primarily static-circuit
design strategy, with dynamic circuits used only sparingly
in SRAMs and other critical regions of the processor core.
Power dissipation was a significant concern, and it was a
key factor in the decision to adopt a predominantly static-
circuit design approach. In addition, the SOI technology,

including uncertainties associated with the modeling
of the floating-body effect [21–23] and its impact on
noise immunity [22, 24 –27] and overall chip decoupling
capacitance requirements [26], was another factor behind
the choice of a primarily static design style. Finally, the
size and logical complexity of the chip posed risks to
meeting the schedule; choosing a simple, robust circuit
style helped to minimize overall risk to the project
schedule with most efficient use of CAD tool and design
resources. The size and complexity of the chip also
required rigorous testability guidelines, requiring almost
all cycle boundary latches to be LSSD-compatible for
maximum dc and ac test coverage.

Another important circuit design constraint was the
limit placed on signal slew rates. A global slew rate limit
equal to one third of the cycle time was set and enforced
for all signals (local and global) across the whole chip.
The goal was to ensure a robust design, minimizing
the effects of coupled noise on chip timing and also
minimizing the effects of wiring-process variability on
overall path delay. Nets with poor slew also were found
to be more sensitive to device process variations and
modeling uncertainties, even where long wires and RC
delays were not significant factors. The general philosophy
was that chip cycle-time goals also had to include the
slew-limit targets; it was understood from the beginning
that the real hardware would function at the desired
cycle time only if the slew-limit targets were also met.

The following sections describe how these design
constraints were met without sacrificing cycle time. The
latch design is described first, including a description of
the local clocking scheme and clock controls. Then the
circuit design styles are discussed, including a description

Figure 9

Global clock waveforms showing 20 ps of measured skew.
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Components of Path Delay

# of levels of logic 
Internal cell delay 
wire delay 
cell input capacitance 
cell fanout 
cell output drive strength

28
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Who controls the delay?

29
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From Delay Models to Timing Analysis
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Fig. 1. Process SEM cross section.

The process was raised from [1] to limit standby power.

Circuit design and architectural pipelining ensure low voltage

performance and functionality. To further limit standby current

in handheld ASSPs, a longer poly target takes advantage of the

versus dependence and source-to-body bias is used

to electrically limit transistor in standby mode. All core

nMOS and pMOS transistors utilize separate source and bulk

connections to support this. The process includes cobalt disili-

cide gates and diffusions. Low source and drain capacitance, as

well as 3-nm gate-oxide thickness, allow high performance and

low-voltage operation.

III. ARCHITECTURE

The microprocessor contains 32-kB instruction and data

caches as well as an eight-entry coalescing writeback buffer.

The instruction and data cache fill buffers have two and four

entries, respectively. The data cache supports hit-under-miss

operation and lines may be locked to allow SRAM-like oper-

ation. Thirty-two-entry fully associative translation lookaside

buffers (TLBs) that support multiple page sizes are provided

for both caches. TLB entries may also be locked. A 128-entry

branch target buffer improves branch performance a pipeline

deeper than earlier high-performance ARM designs [2], [3].

A. Pipeline Organization

To obtain high performance, the microprocessor core utilizes

a simple scalar pipeline and a high-frequency clock. In addition

to avoiding the potential power waste of a superscalar approach,

functional design and validation complexity is decreased at the

expense of circuit design effort. To avoid circuit design issues,

the pipeline partitioning balances the workload and ensures that

no one pipeline stage is tight. The main integer pipeline is seven

stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is

Fig. 2. Microprocessor pipeline organization.

shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-
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Example

• Parallel to serial converter: 

a

b T ! time(clk"Q) + time(mux) + time(setup)

T ! #clk"Q + #mux + #setup

clk

f T
1 MHz 1 μs
10 MHz 100 ns

100 MHz 10 ns
1 GHz 1 ns

Timing Analysis
What is the 

smallest T that 
produces correct 

operation?  Or, can 
we meet a target T?
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stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is
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shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-

Must consider all connected register pairs, 
paths, plus from input to register, plus 

register to output.

?

• Design tools help in the search.   
• Synthesis tools work to meet clock 

constraint, report delays on paths,   
– Special static timing analyzers accept a 

design netlist and report path delays,  
– and, of course, simulators can be used to 

determine timing performance.
Tools that are expected to do something about 
the timing behavior (such as synthesizers), also 
include provisions for specifying input arrival 

times (relative to the clock), and output 
requirements (set-up times of next stage).



Timing Analysis, real example

From “The circuit and physical design of the POWER4 microprocessor”, IBM J Res and Dev, 46:1, Jan 2002, J.D. Warnock et al.

netlist. Of these, 121 713 were top-level chip global nets,
and 21 711 were processor-core-level global nets. Against
this model 3.5 million setup checks were performed in late
mode at points where clock signals met data signals in
latches or dynamic circuits. The total number of timing
checks of all types performed in each chip run was
9.8 million. Depending on the configuration of the timing
run and the mix of actual versus estimated design data,
the amount of real memory required was in the range
of 12 GB to 14 GB, with run times of about 5 to 6 hours
to the start of timing-report generation on an RS/6000*
Model S80 configured with 64 GB of real memory.
Approximately half of this time was taken up by reading
in the netlist, timing rules, and extracted RC networks, as

well as building and initializing the internal data structures
for the timing model. The actual static timing analysis
typically took 2.5–3 hours. Generation of the entire
complement of reports and analysis required an additional
5 to 6 hours to complete. A total of 1.9 GB of timing
reports and analysis were generated from each chip timing
run. This data was broken down, analyzed, and organized
by processor core and GPS, individual unit, and, in the
case of timing contracts, by unit and macro. This was one
component of the 24-hour-turnaround time achieved for
the chip-integration design cycle. Figure 26 shows the
results of iterating this process: A histogram of the final
nominal path delays obtained from static timing for the
POWER4 processor.

The POWER4 design includes LBIST and ABIST
(Logic/Array Built-In Self-Test) capability to enable full-
frequency ac testing of the logic and arrays. Such testing
on pre-final POWER4 chips revealed that several circuit
macros ran slower than predicted from static timing. The
speed of the critical paths in these macros was increased
in the final design. Typical fast ac LBIST laboratory test
results measured on POWER4 after these paths were
improved are shown in Figure 27.

Summary
The 174-million-transistor !1.3-GHz POWER4 chip,
containing two microprocessor cores and an on-chip
memory subsystem, is a large, complex, high-frequency
chip designed by a multi-site design team. The
performance and schedule goals set at the beginning of
the project were met successfully. This paper describes
the circuit and physical design of POWER4, emphasizing
aspects that were important to the project’s success in the
areas of design methodology, clock distribution, circuits,
power, integration, and timing.

Figure 25

POWER4 timing flow. This process was iterated daily during the 
physical design phase to close timing.
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Figure 26

Histogram of the POWER4 processor path delays.
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Most paths have hundreds of 
picoseconds to spare.

The critical path



Timing Optimization
As an ASIC designer you get to choose: 
‣ The algorithm 
‣ The Microarchitecture (block diagram) 
‣ The RTL description of the CL blocks 

(number of levels of logic) 
‣ Where to place registers and memory 

(the pipelining) 
‣ Overall floorplan and relative placement 

of blocks
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ABSTRACT

C-slow retiming is a process of automatically increas-
ing the throughput of a design by enabling fine grained
pipelining of problems with feedback loops. This transfor-
mation is especially appropriate when applied to FPGA
designs because of the large number of available registers.
To demonstrate and evaluate the benefits of C-slow re-
timing, we constructed an automatic tool which modifies
designs targeting the Xilinx Virtex family of FPGAs. Ap-
plying our tool to three benchmarks: AES encryption,
Smith/Waterman sequence matching, and the LEON 1
synthesized microprocessor core, we were able to substan-
tially increase the total throughput. For some parameters,
throughput is e↵ectively doubled.

Categories and Subject Descriptors
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1. Introduction

Leiserson’s retiming algorithm[7] o↵ers a polynomial
time algorithm to optimize the clock period on arbitrary
synchronous circuits without changing circuit semantics.
Although a powerful and e�cient transformation that has
been employed in experimental tools[10][2] and commercial
synthesis tools[13][14], it o↵ers only a minor clock period
improvement for a well constructed design, as many de-
signs have their critical path on a single cycle feedback
loop and can’t benefit from retiming.

Also proposed by Leiserson et al to meet the constraints
of systolic computation, is C-slow retiming.1 In C-slow re-
timing, each design register is first replaced with C regis-
ters before retiming. This transformation modifies the de-
sign semantics so that C separate streams of computation
are distributed through the pipeline, greatly increasing the
aggregate throughput at the cost of additional latency and
flip flops. This can automatically accelerate computations
containing feedback loops by adding more flip-flops that
retiming can then move moved around the critical path.

The e↵ect of C-slow retiming is to enable pipelining of
the critical path, even in the presence of feedback loops. To
take advantage of this increased throughput however, there
needs to be su�cient task level parallelism. This process
will slow any single task but the aggregate throughput will
be increased by interleaving the resulting computation.

This process works very well on many FPGA archite-
cures as these architectures tend to have a balanced ra-
tio of logic elements to registers, while most user designs
contain a considerably higher percentage of logic. Addi-
tionaly, many architectures allow the registers to be used
independently of the logic in a logic block.

We have constructed a prototype C-slow retiming tool
that modifies designs targeting the Xilinx Virtex family
of FPGAs. The tool operates after placement: converting
every design register to C separate registers before apply-
ing Leiserson’s retiming algorithm to minimize the clock
period. New registers are allocated by scavenging unused
array resources. The resulting design is then returned to
Xilinx tools for routing, timing analysis, and bitfile gener-
ation.

We have selected three benchmarks: AES encryption,
Smith/Waterman sequence matching, and the LEON 1

1This was originally defined to meet systolic slowdown re-
quirements.
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1. Introduction

Leiserson’s retiming algorithm[7] o↵ers a polynomial
time algorithm to optimize the clock period on arbitrary
synchronous circuits without changing circuit semantics.
Although a powerful and e�cient transformation that has
been employed in experimental tools[10][2] and commercial
synthesis tools[13][14], it o↵ers only a minor clock period
improvement for a well constructed design, as many de-
signs have their critical path on a single cycle feedback
loop and can’t benefit from retiming.

Also proposed by Leiserson et al to meet the constraints
of systolic computation, is C-slow retiming.1 In C-slow re-
timing, each design register is first replaced with C regis-
ters before retiming. This transformation modifies the de-
sign semantics so that C separate streams of computation
are distributed through the pipeline, greatly increasing the
aggregate throughput at the cost of additional latency and
flip flops. This can automatically accelerate computations
containing feedback loops by adding more flip-flops that
retiming can then move moved around the critical path.

The e↵ect of C-slow retiming is to enable pipelining of
the critical path, even in the presence of feedback loops. To
take advantage of this increased throughput however, there
needs to be su�cient task level parallelism. This process
will slow any single task but the aggregate throughput will
be increased by interleaving the resulting computation.

This process works very well on many FPGA archite-
cures as these architectures tend to have a balanced ra-
tio of logic elements to registers, while most user designs
contain a considerably higher percentage of logic. Addi-
tionaly, many architectures allow the registers to be used
independently of the logic in a logic block.

We have constructed a prototype C-slow retiming tool
that modifies designs targeting the Xilinx Virtex family
of FPGAs. The tool operates after placement: converting
every design register to C separate registers before apply-
ing Leiserson’s retiming algorithm to minimize the clock
period. New registers are allocated by scavenging unused
array resources. The resulting design is then returned to
Xilinx tools for routing, timing analysis, and bitfile gener-
ation.

We have selected three benchmarks: AES encryption,
Smith/Waterman sequence matching, and the LEON 1

1This was originally defined to meet systolic slowdown re-
quirements.

IN OUT

1 1

1 1 22

Figure 1: A small graph before retiming. The
nodes represent logic delays, with the inputs and
outputs passing through mandatory, fixed regis-
ters. The critical path is 5.

microprocessor core, for which we can envision scenar-
ios where ample task-level parallelism exists. The AES
and Smith/Watherman benchmarks were also C-slowed by
hand, enabling us to evaluate how well our automated tech-
niques compare with careful, hand designed implementa-
tions that accomplishes the same goals.

The LEON 1 processor is a significantly larger synthe-
sized design. Although it seems unusual, there is su�cient
task level parallelism to C-slow a microprocessor, as each
stream of execution can be viewed as a separate task. The
resulting C-slowed design behaves like a multithreaded sys-
tem, with each virtual processor running slower but o↵er-
ing a higher total throughput.

This prototype demonstrates significant speedups on
all 3 benchmarks, nearly doubling the throughput for the
proper parameters. On the AES and Smith/Waterman
benchmarks, these automated results compare favorably
with careful hand-constructed implementations that were
the result of manual C-slowing and pipelining.

In the remainder of the paper, we first discuss the se-
mantic restrictions and changes that retiming and C-slow
retiming impose on a design, the details of the retiming
algorithm, and the use of the target architecture. Fol-
lowing the discussion of C-slow retiming, we describe our
implementation of an automatic retiming tool. Then we
describe the structure of all three benchmarks and present
the results of applying our tool.

2. Conventional Retiming

Leiserson’s retiming treats a synchronous circuit as a
directed graph, with delays on the nodes representing com-
bination delays and weights on the edges representing reg-
isters in the design. An additional node represents the
external world, with appropriate edges added to account
for all the I/Os. Two matrixes are calculated, W and D,
that represent the number of registers and critical path
between every pair of nodes in the graph. Each node also
has a lag value r that is calculated by the algorithm and
used to change the number of registers on any given edge.
Conventional retiming does not change the design seman-
tics: all input and output timings remain unchanged, while
imposing minor design constraints on the use of FPGA fea-
tures. More details and formal proofs of correctness can
be found in Leiserson’s original paper[7].

In order to determine whether a critical path P can be
achieved, the retiming algorithm creates a series of con-
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Figure 2: The example in Figure 2 after retiming.
The critical path is reduced from 5 to 4.

straints to calculate the lag on each node. All these con-
strains are of the form x � y  k that can be solved in
O(n2) time by using the Bellman/Ford shortest path al-
gorithm. The primary constraints insure correctness: no
edge will have a negative number of registers while every
cycle will always contain the original number of registers.
All IO passes through an intermediate node insuring that
input and output timings do not change. These constraints
can be modified to insure that a particular line will contain
no registers or a mandatory minimum number of registers
to meet architectural constraints.

A second set of constraints attempt to insure that every
path longer than the critical path will contain at least one
register, by creating an additional constraint for every path
longer than the critical path. The actual constraints are
summarized in Table 1.

This process is iterated to find the minimum critical
path that meets all the constraints. The lag calculated by
these constraints can then be used to change the design
to meet this critical path. For each edge, a new register
weight w0 is calculated, with w0(e) = w(e)� r(u) + r(v).

An example of how retiming a↵ects a simple design can
be seen in Figures 2 and 2. The initial design has a critical
path of 5, while after retiming the critical path is reduced
to 4. During this process, the number of registers is in-
creased, yet the number of registers on every cycle and
the path from input to output remain unchanged. Since
the feedback loop has only a single register and a delay of
4, it is impossible to further improve the performance by
retiming.

Retiming in this form imposes only minimal design lim-
itations: there can be no asynchronous resets or similar
elements, as the retiming technique only applies to syn-
chronous circuits. A synchronous global reset imposes too
many constraints to allow retiming unless initial conditions
are calculated and the global reset itself is now excluded
from retiming purposes. Local synchronous resets and en-
ables just produce small, self loops that have no e↵ect on
the correct operation of the algorithm.

Most other design features can be accommodated by
simply adding appropriate constraints. As an example, all
tristated lines can’t have registers applied to them, while
mandatory elements such as those seen in synchronous
memories can be easily accommodated by mandating reg-
isters on the appropriate nets.

Memories themselves can be retimed like any other el-
ement in the design, with dual ported memories treated
as a single node for retiming purposes. Memories that
are synthesized with a negative clock edge (to create the
design illusion of asynchronous memories) can either be

Circles are combinational 
logic, labelled with delays.

Critical path is 5.


We want to improve 
it without changing 
circuit semantics.
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Figure 1: A small graph before retiming. The
nodes represent logic delays, with the inputs and
outputs passing through mandatory, fixed regis-
ters. The critical path is 5.

microprocessor core, for which we can envision scenar-
ios where ample task-level parallelism exists. The AES
and Smith/Watherman benchmarks were also C-slowed by
hand, enabling us to evaluate how well our automated tech-
niques compare with careful, hand designed implementa-
tions that accomplishes the same goals.

The LEON 1 processor is a significantly larger synthe-
sized design. Although it seems unusual, there is su�cient
task level parallelism to C-slow a microprocessor, as each
stream of execution can be viewed as a separate task. The
resulting C-slowed design behaves like a multithreaded sys-
tem, with each virtual processor running slower but o↵er-
ing a higher total throughput.

This prototype demonstrates significant speedups on
all 3 benchmarks, nearly doubling the throughput for the
proper parameters. On the AES and Smith/Waterman
benchmarks, these automated results compare favorably
with careful hand-constructed implementations that were
the result of manual C-slowing and pipelining.

In the remainder of the paper, we first discuss the se-
mantic restrictions and changes that retiming and C-slow
retiming impose on a design, the details of the retiming
algorithm, and the use of the target architecture. Fol-
lowing the discussion of C-slow retiming, we describe our
implementation of an automatic retiming tool. Then we
describe the structure of all three benchmarks and present
the results of applying our tool.

2. Conventional Retiming

Leiserson’s retiming treats a synchronous circuit as a
directed graph, with delays on the nodes representing com-
bination delays and weights on the edges representing reg-
isters in the design. An additional node represents the
external world, with appropriate edges added to account
for all the I/Os. Two matrixes are calculated, W and D,
that represent the number of registers and critical path
between every pair of nodes in the graph. Each node also
has a lag value r that is calculated by the algorithm and
used to change the number of registers on any given edge.
Conventional retiming does not change the design seman-
tics: all input and output timings remain unchanged, while
imposing minor design constraints on the use of FPGA fea-
tures. More details and formal proofs of correctness can
be found in Leiserson’s original paper[7].

In order to determine whether a critical path P can be
achieved, the retiming algorithm creates a series of con-
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Figure 2: The example in Figure 2 after retiming.
The critical path is reduced from 5 to 4.

straints to calculate the lag on each node. All these con-
strains are of the form x � y  k that can be solved in
O(n2) time by using the Bellman/Ford shortest path al-
gorithm. The primary constraints insure correctness: no
edge will have a negative number of registers while every
cycle will always contain the original number of registers.
All IO passes through an intermediate node insuring that
input and output timings do not change. These constraints
can be modified to insure that a particular line will contain
no registers or a mandatory minimum number of registers
to meet architectural constraints.

A second set of constraints attempt to insure that every
path longer than the critical path will contain at least one
register, by creating an additional constraint for every path
longer than the critical path. The actual constraints are
summarized in Table 1.

This process is iterated to find the minimum critical
path that meets all the constraints. The lag calculated by
these constraints can then be used to change the design
to meet this critical path. For each edge, a new register
weight w0 is calculated, with w0(e) = w(e)� r(u) + r(v).

An example of how retiming a↵ects a simple design can
be seen in Figures 2 and 2. The initial design has a critical
path of 5, while after retiming the critical path is reduced
to 4. During this process, the number of registers is in-
creased, yet the number of registers on every cycle and
the path from input to output remain unchanged. Since
the feedback loop has only a single register and a delay of
4, it is impossible to further improve the performance by
retiming.

Retiming in this form imposes only minimal design lim-
itations: there can be no asynchronous resets or similar
elements, as the retiming technique only applies to syn-
chronous circuits. A synchronous global reset imposes too
many constraints to allow retiming unless initial conditions
are calculated and the global reset itself is now excluded
from retiming purposes. Local synchronous resets and en-
ables just produce small, self loops that have no e↵ect on
the correct operation of the algorithm.

Most other design features can be accommodated by
simply adding appropriate constraints. As an example, all
tristated lines can’t have registers applied to them, while
mandatory elements such as those seen in synchronous
memories can be easily accommodated by mandating reg-
isters on the appropriate nets.

Memories themselves can be retimed like any other el-
ement in the design, with dual ported memories treated
as a single node for retiming purposes. Memories that
are synthesized with a negative clock edge (to create the
design illusion of asynchronous memories) can either be
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Power 4: Timing Estimation, Closure

Timing Estimation
Predicting a 

processor’s clock 
rate early in the 

project

From “The circuit and physical design of the POWER4 microprocessor”, IBM J 
Res and Dev, 46:1, Jan 2002, J.D. Warnock et al.



UC Regents Spring 2016  © UCBCS 250 L4: Timing

Power 4: Timing Estimation, Closure

Timing Closure
Meeting

(or exceeding!)  the 
timing estimate

From “The circuit and physical design of the POWER4 microprocessor”, IBM J 
Res and Dev, 46:1, Jan 2002, J.D. Warnock et al.
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Fig. 1. Process SEM cross section.

The process was raised from [1] to limit standby power.

Circuit design and architectural pipelining ensure low voltage

performance and functionality. To further limit standby current

in handheld ASSPs, a longer poly target takes advantage of the

versus dependence and source-to-body bias is used

to electrically limit transistor in standby mode. All core

nMOS and pMOS transistors utilize separate source and bulk

connections to support this. The process includes cobalt disili-

cide gates and diffusions. Low source and drain capacitance, as

well as 3-nm gate-oxide thickness, allow high performance and

low-voltage operation.

III. ARCHITECTURE

The microprocessor contains 32-kB instruction and data

caches as well as an eight-entry coalescing writeback buffer.

The instruction and data cache fill buffers have two and four

entries, respectively. The data cache supports hit-under-miss

operation and lines may be locked to allow SRAM-like oper-

ation. Thirty-two-entry fully associative translation lookaside

buffers (TLBs) that support multiple page sizes are provided

for both caches. TLB entries may also be locked. A 128-entry

branch target buffer improves branch performance a pipeline

deeper than earlier high-performance ARM designs [2], [3].

A. Pipeline Organization

To obtain high performance, the microprocessor core utilizes

a simple scalar pipeline and a high-frequency clock. In addition

to avoiding the potential power waste of a superscalar approach,

functional design and validation complexity is decreased at the

expense of circuit design effort. To avoid circuit design issues,

the pipeline partitioning balances the workload and ensures that

no one pipeline stage is tight. The main integer pipeline is seven

stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is

Fig. 2. Microprocessor pipeline organization.

shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-

Floorplaning: essential to meet timing.

(Intel XScale 80200)
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Timing Analysis Tools
‣ Static Timing Analysis:  Tools use delay models for 

gates and interconnect.  Traces through circuit paths. 
‣ Cell delay model capture  
‣ For each input/output pair, internal delay (output load 

independent) 
‣ output dependent delay 

‣ Standalone tools (PrimeTime) and part of logic 
synthesis. 

‣ Back-annotation takes information from results of 
place and route to improve accuracy of timing 
analysis. 

‣ DC in “topographical mode” uses preliminary layout 
information to model interconnect parasitics.   
‣ Prior versions used a simple fan-out model of gate 

loading.
39
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Hold-time Violations

‣ Some state elements have positive hold time requirements. 
‣ How can this be? 

‣ Fast paths from one state element to the next can create a 
violation.  (Think about shift registers!) 

‣ CAD tools do their best to fix violations by inserting delay 
(buffers). 
‣ Of course, if the path is delayed too much, then cycle time suffers. 
‣ Difficult because buffer insertion changes layout, which changes 

path delay. 40
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clock domain is 
not practical for 

a 2.6 billion 
transistor design



GALS: Globally Asynchronous, Locally Synchronous

both clocks. The basic GALS method focuses on point-

to-point communication between blocks.

FIFO solutions
Another approach to interfacing locally synchro-

nous blocks is using specially designed asynchronous

FIFO buffers8–10 and hiding the system synchronization

problem within the FIFO buffers. Such a system can

tolerate very large interconnect delays and is also

robust with regard to metastability. Designers can use

this method to interconnect asynchronous and

synchronous systems and also to construct synchro-

nous-synchronous and asynchronous-asynchronous

interfaces. Figure 2 diagrams a typical FIFO interface,

which achieves an acceptable data throughput.8 In

addition to the data cells, the FIFO structure includes

an empty/full detector and a special deadlock de-

tector.

The advantage of FIFO synchronizers is that they

don’t affect the locally synchronous module’s opera-

tion. However, with very wide interconnect data

buses, FIFO structures can be costly in silicon area.

Also, they require specialized complex cells to

generate the empty/full flags used for flow control.

The introduced latency might be significant and

unacceptable for high-speed applications.

As an alternative, Beigne and Vivet designed

a synchronous-asynchronous FIFO based on the

bisynchronous classical FIFO design using gray code,

for the specific case of an asynchronous network-on-

chip (NoC) interface.10 Their aim was to maintain

compatibility with existing design solutions and to use

standard CAD tools. Thus, even with some performance

degradation or suboptimal

architecture, designers can

achieve the main goal of

designing GALS systems in

the standard design envi-

ronment.

Boundary

synchronization
A third solution is to

perform data synchroni-

zation at the borders of

the locally synchronous

island, without affecting

the inner operation of lo-

cally synchronous blocks

and without relying on

FIFO buffers. For this purpose, designers can use

standard two-flop, one-flop, predictive, or adaptive

synchronizers for mesochronous systems, or locally

delayed latching.1,11 This method can achieve very

reliable data transfer between locally synchronous

blocks. On the other hand, such solutions generally

increase latency and reduce data throughput, resulting

in limited applicability for high-speed systems. Table 1

summarizes the properties of GALS systems’ synchro-

nization methods.

Advantages and limitations of
GALS solutions

The scientific community has shown great interest

in GALS solutions and architectures in the past two

decades. However, this interest hasn’t culminated in

many commercial applications, despite all reported

advantages. There are several reasons why standard

design practice has not adopted GALS techniques.

Design and system integration issues
Many proposed solutions require programmable

ring oscillators. This is an inexpensive solution that

allows full control of the local clock. However, it has

significant drawbacks. Ring oscillators are impractical

for industrial use. They need careful calibration

because they are very sensitive to process, voltage,

and temperature variations. Moreover, embedded ring

oscillators consume additional power through contin-

uous switching of the chained inverters.

On the other hand, careful design of the delay line

can reduce its power consumption to a level below

that of a corresponding clock tree. In addition,
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Figure 2. Typical FIFO-based GALS system.

Globally Asynchronous, Locally Synchronous Design and Test

IEEE Design & Test of Computers

Synchronous modules typically 50K-1M gates, 
so that the synchronous logic approach works 
well without requiring heroics.  Examples ...



The Power5 scans fetched instructions for
branches (BP stage), and if it finds a branch,
predicts the branch direction using three
branch history tables shared by the two
threads. Two of the BHTs use bimodal and
path-correlated branch prediction mecha-
nisms to predict branch directions.6,7 The
third BHT predicts which of these prediction
mechanisms is more likely to predict the cor-

rect direction.7 If the fetched instructions con-
tain multiple branches, the BP stage can pre-
dict all the branches at the same time. In
addition to predicting direction, the Power5
also predicts the target of a taken branch in
the current cycle’s eight-instruction group. In
the PowerPC architecture, the processor can
calculate the target of most branches from the
instruction’s address and offset value. For
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Figure 3. Power5 instruction pipeline (IF = instruction fetch, IC = instruction cache, BP = branch predict, D0 = decode stage
0, Xfer = transfer, GD = group dispatch, MP = mapping, ISS = instruction issue, RF = register file read, EX = execute, EA =
compute address, DC = data caches, F6 = six-cycle floating-point execution pipe, Fmt = data format, WB = write back, and
CP = group commit).
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Figure 4. Power5 instruction data flow (BXU = branch execution unit and CRL = condition register logical execution unit).

IBM Power 5 CPU - Dynamically Scheduled

Stars denote FIFOs that create separate 
synchronous domains. An example of how 
architecture and circuits work together.



Rocket uses GALS for accelerator interface

Your project 
interfaces with 

the RISC-V 
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the memory 
system using 

FIFOs.

Your timing 
closure is 

independent of 
the CPU logic 

domain.
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Conclusion
‣ Timing Optimization:  You start with a target on clock 

period.  What control do you have? 
‣ Biggest effect is RTL manipulation.  
‣ i.e., how much logic to put in each pipeline stage. 
‣ We will be talking later about how to manipulate RTL 

for better timing results. 
‣ In most cases, the tools will do a good job at logic/

circuit level: 
‣ Logic level manipulation 
‣ Transistor sizing 
‣ Buffer insertion 
‣ But some cases may be difficult and you may need to 

help 
45
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End of Physical Realities 
part 1 Timing 
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Simple exercises for gaining intuition about 


timing for your process + EDA tools.

Thanks to Bhupesh Dasila, Open-Silicon Bangalore

http://www.edn.com/user/Bhupesh%20Singh%20Dasila


Bhupesh Dasila

Synthesize gate chains using hand-specified library cells

Exercises


cell library


and place


and route


tools.



Lets you 
know how 
many levels 
of logic you 
can use in 
the best 
case.

Helps you “see through” ... “Technology X”.

Synthesis 
constrained 
to 2ns clock.

Spring 2003 EECS150 – Lec10-Timing Page 11

Gate Delay

• Cascaded gates:

Vout

Vin

Delay of a chain of 3 inverters with strongest 
strength. “Guaranteed not to exceed” speed.

weak 
NANDs

Chain lengths ...

40 nm process 
29 ps/gate av.

http://www.edn.com/user/Bhupesh%20Singh%20Dasila
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Wire Delay

• Even in those cases where the 

transmission line effect is 

negligible:

– Wires posses distributed 

resistance and capacitance

– Time constant associated with 

distributed RC is proportional to 

the square of the length

• For short wires on ICs, 

resistance is insignificant 

(relative to effective R of 

transistors), but C is important.

– Typically around half of C of 

gate load is in the wires.

• For long wires on ICs:

– busses, clock lines, global 

control signal, etc.

– Resistance is significant, 

therefore distributed RC effect 

dominates.

– signals are typically “rebuffered” 

to reduce delay:
v1

v4
v3

v2

time

v1 v2 v3 v4

Force P&L to drive a long wire with a known buffer cell.
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Wire Delay

• Even in those cases where the 

transmission line effect is 

negligible:

– Wires posses distributed 

resistance and capacitance

– Time constant associated with 

distributed RC is proportional to 

the square of the length

• For short wires on ICs, 

resistance is insignificant 

(relative to effective R of 

transistors), but C is important.

– Typically around half of C of 

gate load is in the wires.

• For long wires on ICs:

– busses, clock lines, global 

control signal, etc.

– Resistance is significant, 

therefore distributed RC effect 

dominates.

– signals are typically “rebuffered” 

to reduce delay:
v1

v4
v3

v2

time

v1 v2 v3 v4

Vary driver 
strength, 
wire length, 
metal layer.



Shows the 
maximum 
distance two 
gates can be 
placed and 
still meet 
your clock 
period.

Distributed 
RC is the 
square of 
the length 
is clearly 
seen!



Bhupesh Dasila

http://www.edn.com/user/Bhupesh%20Singh%20Dasila
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Turning Rise/Fall Delay into Gate Delay
• Cascaded gates:

“transfer curve” for inverter.

11

1 11 10 0 0 0

CS250, UC Berkeley Fall ’12Lecture 04, Timing

Driving Large Loads
‣ Large fanout nets: clocks, resets, memory bit lines, off-chip
‣ Relatively small driver results in long rise time (and thus 

large gate delay)

‣ Strategy:

‣ Optimal trade-off between delay per stage and total 
number of stages ⇒ fanout of ∼4-6 per stage

12

Staged Buffers
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Register file: Synthesize, or use SRAM?

R1

R2

...

R31

Q

Q

Q

R0 - The constant 0 Q

clk

.

.

.

32M
U
X

32

32

sel(rs1)

5
.
.
.

rd1

32M
U
X

32

32

sel(rs2)

5
.
.
.

rd2

“two read ports”

D

D

D

En

En

En

D
E
M
U
X

.

.

.

sel(ws)

5

WE

wd

32
Speed will depend on 

how large it lays out ...



Figure 3: Using the raw area data, the physical implementation team can get a more accurate area estimation early in the RTL 
development stage for floorplanning purposes. This shows an example of this graph for a 1-port, 32-bit-wide SRAM.

Synthesized, custom, and SRAM-based register files, 40nm

For small 
register 
files, logic 
synthesis is 
competitive.



Not clear if 
the SRAM 
data points 
include area 
for register 
control, etc.

Register


file 


compiler

Synthesis

SRAMS

Bhupesh Dasila

http://www.edn.com/user/Bhupesh%20Singh%20Dasila


Today: Timing insights for your project

What we’re not doing.  If this class was 
EE 241 and your project was an SRAM: 

You could see through down to the layout.
Timing? Use SPICE on this hand-drawn schematic.



Technology X: The CS 250 timing challenge.

What we are doing --->

© Synopsys 2012 7

1986: Logic Compiler
Optimal Solutions, Inc. (aka Synopsys, Inc.) 

Technology X – Provide automation and increase productivity for gate          
level designers 

Logic Synthesis

If your accelerator is 


too slow ... two options:

Bottom-up: Take control away 
from logic synthesis. Use HDL 
as textual schematic. Also, use 
command-line tool flags.

Top-down: Rework high-level 
micro-architecture. Let 
Technology X keep its job.  

Sometimes necessary. Ben is the expert, ask in discussion section.

Today.


