
CS250, UC Berkeley Sp16Lecture 02, HDLs/Chisel

CS250 
VLSI Systems Design

Lecture 2: Chisel Introduction
Spring 2016

John Wawrzynek
with

Chris Yarp (GSI)

CS250, UC Berkeley Sp16Lecture 02, HDLs/Chisel

HDL History
‣ Verilog originated at Automated Integrated Design Systems (renamed Gateway) in 1985.

Acquired by Cadence in 1989.
‣ Invented as simulation language. Synthesis was an afterthought. Many of the basic

techniques for synthesis were developed at Berkeley in the 80’s and applied commercially
in the 90’s.

‣ Around the same time as the origin of Verilog , the US Department of Defense developed
VHDL (A double acronym! VSIC (Very High-Speed Integrated Circuit) HDL). Because it was
in the public domain it began to grow in popularity.

‣ Afraid of losing market share, Cadence opened Verilog to the public in 1990.
‣ An IEEE working group was established in 1993, and ratified IEEE Standard 1394 (Verilog)

in 1995.
‣ Verilog is the language of choice of Silicon Valley companies, initially because of high-

quality tool support and its similarity to C-language syntax.
‣ VHDL is still popular within the government, in Europe and Japan, and some Universities.
‣ Most major CAD frameworks now support both.
‣ Latest Verilog version is “System Verilog” .
‣ Other alternatives these days:
‣ Bluespec (MIT spin-out) models digital systems using “guarded atomic actions”
‣ C-to-gates Compilers (ex: Cadence C-to-s, Vivado HLS)

2

CS250, UC Berkeley Sp16Lecture 02, HDLs/Chisel

Problems with Verilog
‣ Designed as a simulation language. “Discrete Event Semantics”
‣ Many constructs don’t synthesize: ex: deassign, timing constructs
‣ Others lead to mysterious results: for-loops
‣ Difficult to understand synthesis implications of procedural assignment (always

blocks), and blocking versus non-blocking assignments
‣ Your favorite complaint here!
‣ In common use, most users ignore much of the language and stick to a very strict

“style”, Large companies post use rules and run lint style checkers. Nonetheless

3

// Gray-code to binary-code converter
module gray2bin1 (bin, gray);
 parameter SIZE = 8;
 output [SIZE-1:0] bin;
 input [SIZE-1:0] gray;

 genvar i;

 generate for (i=0; i<SIZE; i=i+1) begin:bit
 assign bin[i] = ^gray[SIZE-1:i];
 end endgenerate
 endmodule

‣ The real power of a textual
representation of circuits is the
ability to write circuit “compilers”.
Verilog has very weak “meta-
programming” support”. Simple
parameter expressions, generate loops
and case.

‣ Various hacks around this over the
years, ex: embedded TCL scripting.

CS250, UC Berkeley Sp16Lecture 02, HDLs/Chisel

Chisel
‣ Experimental attempt at a fresh start to address these issues.
‣ Clean simple set of design construction primitives, just what is needed

for RTL design
‣ Powerful “metaprogramming” model for building circuit generators

‣ Why embedded?
‣ Avoid the hassle of writing and maintaining a new programming

language (most of the work would go into the non-hardware specific parts
of the language anyway).

‣ Why Scala?
‣ Brings together the best of many others: Java JVM, functional

programming, OO programming, strong typing, type inference.
‣ Still very new. Bugs will show up. Your feedback is needed.
‣ In class, brief presentation of basics. Ask questions.
‣ Tutorial/manual and other documents available online: chisel.berkeley.edu
‣ Note: Chisel is not High-level Synthesis. Much closer to Verilog/VHDL than

C-to-gates.
4

Constructing Hardware In a Scala Embedded Language

CS250, UC Berkeley Sp16

Outline
‣ Brief Introduction to Chisel
‣ Literal Constructors
‣ Bundles, Port Constructors, Vecs
‣ Components and Circuit Hierarchy
‣ More on Multiplexors
‣ Registers
‣ Conditional Update Rules
‣ FSMs
‣ More on Interface Bundles, and Bulk

Connections
‣ Running

5

CS250, UC Berkeley Sp16Lecture 02, HDLs/Chisel

// simple logic expression

(a & ~b) | (~a & b)

Simple Combinational Logic Example

– Notes:

‣The associated logic circuits are not “executed”. They are active always (like
continuous assignment in Verilog).

‣Unlike Verilog, no built-in logic gates. Expressions instead.

‣The “variables”, a and b, are “named wires”, and were given names here
because they are inputs to the circuit. Other wires don’t need names.

‣Here we assumed that the inputs, and therefore all generated wires, are one
bit wide, but the same expression would work for wider wires. The logic
operators used here are “bitwise”. There are corresponding operations for
booleans.

‣Chisel includes a powerful wire width inference mechanism.
6

out

CS250, UC Berkeley Sp16Lecture 02, HDLs/Chisel

// simple logic expression

val out =(a & ~b) | (~a & b)

– The keyword val comes from Scala. It is a way to declare a program variable
that can only be assigned once - a constant.

– This way out can be generated at one place in the circuit and then “fanned-
out” to other places where out appears.

7

out

– In the previous example because the wires a and b, are named, each can be used
in several places. Similarly we could name the circuit output:

// fan-out

val z =(a & out) | (out & b)

Simple Combinational Logic Example

– Another reason to name a wire is to help in debugging.

CS250, UC Berkeley Sp16Lecture 02, HDLs/Chisel

// simple logic function

def XOR (a: Bits, b: Bits) = (a & ~b) | (~a & b)

– Functions wrapping up simple logic are light-weight. This results in hierarchy in
your code, but no hierarchy in the Chisel output.

– We’ll see later that Chisel Modules are used for building hierarchy in the
resulting circuit.

8

– Naming wires and using fanout gives us a way to reuse an output in several places in
the generated circuit. Function abstraction gives us a way to reuse a circuit
description:

// Constructing multiple copies

val z =(x & XOR(x,y)) | (XOR(x,y) & y)

Functional Abstraction

– Here the function inputs and output are assigned the type Bits. More on types
soon.

– Now, wherever we use the XOR function, we get a copy of the associated logic.
Think of the function as a “constructor”.

CS250, UC Berkeley Sp16Lecture 02, HDLs/Chisel 9

– Chisel datatypes are used to specify the type of values held in state elements
or flowing on wires.

– Hardware circuits ultimately operate on vectors of binary digits, but more abstract
representations for values allow clearer specifications and help the tools generate
more optimal circuits.

– The basic types in Chisel are:

Datatypes in Chisel

Bits Raw collection of bits
SInt Signed integer number
UInt Unsigned integer number
Bool Boolean

– All signed numbers represented as 2’s complement.

– Chisel supports several higher-order types: Bundles and Vecs.

CS250, UC Berkeley Sp16Lecture 02, HDLs/Chisel 10

– Although it is useful to keep track of the types of your wires, because of
Scala type inference, it is not always necessary to declare the type.

– For instance in our earlier example:

Type Inference

the type of out was inferred from the types of a and b and the operators.

– If you want to make sure, or if there is not enough information around for the
inference engine, you can always specify the type explicitly:

// simple logic expression

val out =(a & ~b) | (~a & b)

// simple logic expression

val out: Bits =(a & ~b) | (~a & b)

– Also, as we shall see, explicit type declaration is necessary in some situations.

CS250, UC Berkeley Sp16Lecture 02, HDLs/Chisel 11

– Chisel Bundles represent collections of wires with named fields.

– Similar to “struct” in C. In chisel, Bundles are defined as a class (similar to in C++
and Java):

Bundles

– Chisel has class methods for Bundle (i.e., automatic connection creation) therefore
user created bundles need to “extend” class Bundle. (More later)

– Each field is given a name and defined with a constructor of the proper type and
with parameters specifying width and direction.

– Instances of FIFOInput can now be made:

class FIFOInput extends Bundle {

 val rdy = Bool(OUTPUT) // Indicates if FIFO has space

 val data = Bits(INPUT, 32) // The value to be enqueued

 val enq = Bool(INPUT) // Assert to enqueue data

}

val jonsIO = new FIFOInput;

– Bundle definitions can be nested and built into hierarchies,

– And are used to define the interface of “modules” …

– Bundle “flip” operator is used to create the “opposite” Bundle (wrt to direction)

CS250, UC Berkeley Sp16Lecture 02, HDLs/Chisel 12

– Literals are values specified directly in your source code.

– Chisel defines type specific constructors for specifying literals.

Literals

Bits("ha") // hexadecimal 4-bit literal of type Bits
Bits("o12") // octal 4-bit literal of type Bits
Bits("b1010") // binary 4-bit literal of type Bits
SInt(5) // signed decimal 4-bit literal of type Fix
SInt(-8) // negative decimal 4-bit literal of type Fix
UInt(5) // unsigned decimal 3-bit literal of type UFix
Bool(true) // literals for type Bool, from Scala boolean literals
Bool(false)

– By default Chisel will size your literal to the minimum necessary width.

– Alternatively, you can specify a width value as a second argument:
Bits("ha", 8) // hexadecimal 8-bit literal of type Bits, 0-extended
SInt(-5, 32) // 32-bit decimal literal of type Fix, sign-extended
SInt(-5, width = 32) // handy if lots of parameters

– Error reported if specified width value is less than needed.

CS250, UC Berkeley Sp16Lecture 02, HDLs/Chisel 13

– Chisel defines a set of hardware operators for the builtin types.
Builtin Operators

CS250, UC Berkeley Sp16Lecture 02, HDLs/Chisel

Bit-width Inference

14

– A nice feature of the Chisel compiler is that it will automatically size the
width of wires.

– The bit-width of ports (of modules) and registers must be specified, but otherwise
widths are inferred with the application of the following rules:

z = x + y wz = max(wx, wy)
z = x - y wz = max(wx, wy)
z = x <bitwise-op> y wz = max(wx, wy)
z = Mux(c, x, y) wz = max(wx, wy)
z = w * y wz = wx + wy
z = x << n wz = wx + maxNum(n)
z = x >> n wz = wx - minNum(n)
z = Cat(x, y) wz = wx + wy
z = Fill(n, x) wz = wx * maxNum(n)

CS250, UC Berkeley Sp1615

– Bundle and Vec are classes for aggregates of other types.
– The Bundle class similar to “struct” in C, collection with named fields:

– The Vec class is an indexable array of same type objects:

class MyFloat extends Bundle {
 val sign = Bool()
 val exponent = Bits(width = 8)
 val significant = Bits(width = 23)
}
val x = new MyFloat()
Val xs = x.sign

– Note: Vec can contain collections of wires, registers, or bundles.
– Vec and Bundle inherit from class, Data. Every object that ultimately inherits

from Data can be represented as a bit vector in a hardware design.
– Nesting:

val myVec = Vec(5) { SInt(width = 23) } // Vec of 5 23-bit signed integers.

val third = myVec(3) // Name one of the 23-bit signed integers

Bundles and Vecs

class BigBundle extends Bundle {

 val myVec = Vec(5) { SInt(width = 23) } // Vector of 5 23-bit signed integers.

 val flag = Bool()

 val f = new MyFloat() // Previously defined bundle.
}

CS250, UC Berkeley Fall ‘1116

– A port is any Data object with directions assigned to its members.

– Port constructors allow a direction to be added at construction time:

Ports

– The direction of an object can also be assigned at instantiation time (although is

class FIFOInput extends Bundle {
 val rdy = Bool(OUTPUT)
 val data = Bits(width = 32, OUTPUT)
 val enq = Bool(INPUT)
}

class ScaleIO extends Bundle {
 val in = new MyFloat().asInput
 val scale = new MyFloat().asInput
 val out = new MyFloat().asOutput
}

– The methods asInput and asOutput force all components of the data object to the
requested direction.

– Other methods exist for “flipping” direction, etc.

CS250, UC Berkeley Sp1617

– Modules are used to define hierarchy in the generated circuit.
– Similar to modules in Verilog.
– Each defines a port interface, wires together subcircuits.
– Module definitions are class definitions that extend the Chisel Module class.

Modules

class Mux2 extends Module {
 val io = new Bundle{
 val select = Bits(width=1, dir=INPUT)
 val in0 = Bits(width=1, dir=INPUT)
 val in1 = Bits(width=1, dir=INPUT)
 val out = Bits(width=1, dir=OUTPUT)
 }
 io.out := (io.select & io.in1) |
 (̃io.select & io.in0)
}

– The Module slot io is used to hold the interface definition, of type Bundle. io is
assigned a Bundle that defines its ports.

– In this example,
– io is assigned to an anonymous Bundle,

– “:=” assignment operator, in Chisel wires the input of LHS to the output of circuit
on the RHS

CS250, UC Berkeley Sp1618

– Modules are used to define hierarchy in the generated circuit.

Component Instantiation

class Mux4 extends Module {
 val io = new Bundle {
 val in0 = Bits(width=1, dir=INPUT)
 val in1 = Bits(width=1, dir=INPUT)
 val in2 = Bits(width=1, dir=INPUT)
 val in3 = Bits(width=1, dir=INPUT)
 val select = Bits(width=2, dir=INPUT)
 val out = Bits(width=1, dir=OUTPUT)
 }
 val m0 = new Mux2();
 m0.io.select := io.select(0); m0.io.in0 := io.in0; m0.io.in1 := io.in1;

 val m1 = new Mux2();
 m1.io.select := io.select(0); m1.io.in0 := io.in2; m1.io.in1 := io.in3;

 val m3 = new Mux2()
 m3.io.select := io.select(1);
 m3.io.in0 := m0.io.out; m3.io.in1 := m1.io.out

 io.out := m3.io.out
}

CS250, UC Berkeley Sp1619

– Functional constructors for Modules can simplify your code.

Component Functional Abstraction
object Mux2 {
 def apply (select: Bits, in0: Bits, in1: Bits) = {
 val m = new Mux2()
 m.io.in0 := in0
 m.io.in1 := in1
 m.io.select := select
 m.io.out // return the output
 }
}

class Mux4 extends Component {
 val io = new Bundle {
 val in0 = Bits(width=1, dir=INPUT)
 val in1 = Bits(width=1, dir=INPUT)
 val in2 = Bits(width=1, dir=INPUT)
 val in3 = Bits(width=1, dir=INPUT)
 val select = Bits(width=2, dir=INPUT)
 val out = Bits(1, OUTPUT)
 };
 io.out := Mux2(io.select(1),
 Mux2(io.select(0), io.in0, io.in1),
 Mux2(io.select(0), io.in2, io.in3))
}

– object Mux2 creates a
Scala singleton object on
the Mux2 component
class.

– apply defines a method
for creation of a Mux2
instance

CS250, UC Berkeley Sp1620

– Chisel defines a constructor for n-way multiplexors

More on Multiplexors
MuxLookup(index, default,
 Array(key1->value1, key2->value2,..., keyN->valueN))

MuxCase(default, Array(c1 -> a, c2 -> b, ...))

– The index to key match is implemented using the "===" operator.

– Therefore MuxLookup would work for any type for which === is defined.

– "===" is defined on bundles and vecs, as well as the primitive Chisel types.

– Users might can override “===” for their own bundles.

– MuxCase generalizes this by having each key be an arbitrary condition

– where the overall expression returns the value corresponding to the first
condition evaluating to true.

CS250, UC Berkeley Fall ‘11

Registers

21

– Simplest form of state element supported by Chisel is a positive-edge-
triggered register. Is instantiated functionally as:

Reg((a & ~b) | (~a & b))

– This circuit has an output that is a copy of the input signal delayed by one clock
cycle.

– Note, we do not have to specify the type of Reg as it will be automatically
inferred from its input when instantiated in this way.

– In Chisel, clock and reset are global signals that are implicitly included where
needed

– Example use. Rising-edge detector that takes a boolean signal in and outputs
true when the current value is true and the previous value is false:

def risingedge(x: Bool) = x && !Reg(x)

CS250, UC Berkeley Fall ‘11

The Counter Example

22

– Constructor for an up-counter that counts up to a maximum value, max, then
wraps around back to zero (i.e., modulo max+1):
def wraparound(n: UInt, max: UInt) =
 Mux(n > max, UInt(0), n)

def counter(max: UInt) = {
 val y = Reg(resetVal = UInt(0, max.getWidth))
 y := wraparound(y + UInt(1), max)
 y
}

– Constructor for a circuit to output a pulse every n cycles:

– “Toggle flip-flop” - toggles internal state when ce is true:

// Produce pulse every n cycles.
def pulse(n: UInt) = counter(n - UInt(1)) === UInt(0)

// Flip internal state when input true.
def toggle(ce: Bool) = {
 val x = Reg(resetVal = Bool(false))
 x := Mux(ce, !x, x)
 x
}
def squareWave(period: UInt) = toggle(pulse(period))

CS250, UC Berkeley Fall ‘11

Conditional Updates

23

– Instead of wiring register inputs to combinational logic blocks, it is often
useful to specify when updates to the registers will occur and to specify these
updates spread across several separate statements (think FSMs).

val r = Reg() { UInt(width = 16) }
 when (c === 0) {
 r := r + UInt(1)
 }

– register r is updated on the next rising-clock-edge iff c is zero.

– The argument to when is a predicate circuit expression that returns a Bool.

r := SInt(3); s := SInt(3)
when (c1) { r := SInt(1); s := SInt(1) }
when (c2) { r := SInt(2) }

c1 c2 r s
 0 0 3 3
 0 1 2 3
 1 0 1 1
 1 1 2 1

– When a value is assigned in multiple when blocks, the last when block that is true
takes precedence

– Leads to:

– See tutorial for more examples, and variations on this them.

CS250, UC Berkeley Fall ‘11

Finite State Machine Specification (1)

24

– When blocks help in FSM specification:

class MyFSM extends Module {
 val io = new Bundle {
 val in = Bool(dir = INPUT)
 val out = Bool(dir = OUTPUT)
 }
 val IDLE :: S0 :: S1 :: Nil = Enum(3){UInt()}
 val state = Reg(resetVal = IDLE)
 when (state === IDLE) {
 when (io.in) { state := S0 }
 }
 when (state === S0) {
 when (io.in) { state := S1 }
 .otherwise { state := IDLE }
 }
 when (state === S1) {
 .unless (io.in) { state := IDLE }
 }
 io.out := state === S1
}

– Enum(3) generates three Uint lits, used here to represent states values.
– See tutorial for more complex FSM example.

S0
out=0

S1
out=1

IDLE
out=0

in=0

in=0

in=1

in=1

in=1

in=0

CS250, UC Berkeley Fall ‘11

Finite State Machine Specification (2)

25

– Switch helps in FSM specification:

class MyFSM extends Component {
 val io = new Bundle {
 val in = Bool(dir = INPUT)
 val out = Bool(dir = OUTPUT)
 }
 val IDLE :: S0 :: S1 :: Nil = Enum(3) {UInt()}
 val state = Reg(resetVal = IDLE)
 switch (state) {
 is (IDLE) {
 when (io.in) { state := S0 }
 }
 is (S0) {
 when (io.in) { state := S1 }
 .otherwise { state := IDLE }
 }
 is (S1) {
 .unless (io.in) { state := IDLE }
 }
 }
 io.out := state === S1
}

S0
out=0

S1
out=1

IDLE
out=0

in=0

in=0

in=1

in=1

in=1

in=0

CS250, UC Berkeley Fall ‘11

Interfaces and Bulk Connections (1)

26

– Bundles help with interface definitions
class SimpleLink extends Bundle {
 val data = Bits(width=16, dir=OUTPUT)
 val rdy = Bool(dir=OUTPUT);
}

– PLink extends SimpleLink by adding parity bits.

16
data

rdy

16
data

rdy

5
parity

=
SimpleLink

=
PLink

// Super Bundle through nesting
class FilterIO extends Bundle {
 val x = new PLink().flip
 val y = new PLink()
}

FilterIO
x y

– FilterIO aggregates other bundles.

– “flip” recursively changes the “gender” of members.

// Bundle Inheritance
class PLink extends SimpleLink {
 val parity = Bits(width=5, dir=OUTPUT)
}

CS250, UC Berkeley Fall ‘11

Interfaces and Bulk Connections (2)

27

– Bundles help with making connections

– “<>” bulk connects bundles of opposite gender, connecting leaf ports of the same
name to each other.

– “<>” also promotes child component interfaces to parent component interfaces.

class Filter extends Module {
 val io = new FilterIO()
...
}

Filterx y

f1x y f2x y

Block

x y

/ Bulk connections
class Block extends Module {
 val io = new FilterIO()

 val f1 = new Filter()
 val f2 = new Filter()

 f1.io.x <> io.x
 f1.io.y <> f2.io.x
 f2.io.y <> io.y
}

CS250, UC Berkeley Sp16

Running and Testing (1)

28

Scala Compiler generates an executable
(Chisel program)

Execution of the Chisel program:
• generates an internal data structure
(graph of “cells”)
• resolves wire widths
• checks connectivity
• generates target output (currently
verilog or C++)

Actually multiple different verilog targets are possible, pure
simulation, Verilog for ASIC mapping, Verilog for FPGA mapping

Scala Compiler

Run Chisel
Program

foo.scala

verilog C++

CS250, UC Berkeley Sp16Lecture 02, Chisel

More Information
‣ We will use Chisel 2.2.x not 3.0
‣ chisel.eecs.berkeley.edu/documentation.html

29

Chisel Cheat Sheet
Version 0.5 (beta): May 22, 2015

Notation In This Document:
For Functions and Constructors:
Arguments given as kwd:type (name and type(s))
Arguments in brackets ([...]) are optional.
For Operators:
c, x, y are Chisel Data; n, m are Scala Int
w(x), w(y) are the widths of x, y (respectively)
minVal(x), maxVal(x) are the minimum or

maximum possible values of x

Basic Chisel Constructs
Chisel Wire Operators:
val x = UInt() Allocate a as wire of type UInt()
x := y Assign (connect) wire y to wire x
x <> y Connect x and y, wire directionality

is automatically inferred
When executes blocks conditionally by Bool,

and is equivalent to Verilog if
when(condition1) {

// run if condition1 true and skip rest
} . elsewhen (condition2) {

// run if condition2 true and skip rest
} . unless (condition3) {

// run if condition3 false and skip rest
} . otherwise {

// run if none of the above ran
}

Switch executes blocks conditionally by data
switch (x) {

is(value1) {
// run if x === value1

} is(value2) {
// run if x === value2

}
}

Enum generates value literals for enumerations
val s1::s2:: ... ::sn::Nil

= Enum(nodeType:UInt, n:Int)
s1, s2, ..., sn will be created as nodeType literals

with distinct values
nodeType type of s1, s2, ..., sn
n element count

Math Helpers:
log2Up(in:Int): Int log2(in) rounded up
log2Down(in:Int): Int log2(in) rounded down
isPow2(in:Int): Boolean True if in is a power of 2

Basic Data Types
Constructors:
Bool([x:Boolean])
Bits/UInt/SInt([x:Int/String], [width:Int])
x (optional) create a literal from Scala type/

pased String, or declare unassigned if missing
width (optional) bit width (inferred if missing)

Bits, UInt, SInt Casts: reinterpret cast except for:
UInt æ SInt Zero-extend to SInt

Bool Operators:
Chisel Explanation Width
!x Logical NOT 1
x && y Logical AND 1
x || y Logical OR 1

Bits Operators:
Chisel Explanation Width
x(n) Extract bit, 0 is LSB 1
x(n, m) Extract bitfield n - m + 1
x << y Dynamic left shift w(x) + maxVal(y)
x >> y Dynamic right shift w(x) - minVal(y)
x << n Static left shift w(x) + n
x >> n Static right shift w(x) - n
Fill(n, x) Replicate x, n times n * w(x)
Cat(x, y) Concatenate bits w(x) + w(y)
Mux(c, x, y) If c, then x; else y max(w(x), w(y))
~x Bitwise NOT w(x)
x & y Bitwise AND max(w(x), w(y))
x | y Bitwise OR max(w(x), w(y))
x ^ y Bitwise XOR max(w(x), w(y))
x === y Equality(triple equals) 1
x != y Inequality 1
andR(x) AND-reduce 1
orR(x) OR-reduce 1
xorR(x) XOR-reduce 1

UInt, SInt Operators: (bitwdths given for UInts)
Chisel Explanation Width
x + y Addition max(w(x), w(y))
x - y Subtraction max(w(x), w(y))
x * y Multiplication w(x) + w(y)
x / y Division w(x)
x % y Modulus bits(maxVal(y) - 1)
x > y Greater than 1
x >= y Greater than or equal 1
x < y Less than 1
x <= y Less than or equal 1
x >> y Arithmetic right shift w(x) - minVal(y)
x >> n Arithmetic right shift w(x) - n

State Elements
Registers retain state until updated
val my_reg = Reg([outType:Data], [next:Data],

[init:Data])
outType (optional) register type (or inferred)
next (optional) update value every clock
init (optional) initialization value on reset

Updating: assign to latch new value on next clock:
my_reg := next_val
The last update (lexically, per clock) runs
Read-Write Memory provide addressable memories
val my_mem = Mem(out:Data, n:Int,

seqRead:Boolean)
out memory element type
n memory depth (elements)
seqRead only update reads on clock edge

Using: access elements by indexing:
val readVal = my_mem(addr:UInt/Int)

for synchronous read: assign output to Reg
mu_mem(addr:UInt/Int) := y

Modules
Defining: subclass Module with elements, code:

class Accum (width:Int) extends Module {
val io = new Bundle {

val in = UInt(INPUT , width)
val out = UInt(OUTPUT , width)

}
val sum = new Reg(UInt ())
sum := sum + io.in
io.out := sum

}
Usage: access elements using dot notation:

(code inside a Module is always running)
val my_module = Module (new Accum (32))
my_module .io.in := some_data
val sum := my_module .io.out

Hardware Generation
Functions provide block abstractions for code
Defining: write Scala functions with Chisel code:

def Adder (op_a:UInt , op_b:UInt): UInt = {
op_a + op_b

}
Usage: hardware is instantiated when called:

sum := Adder(UInt (1), some_data)

If/For can be used to control hardware generation
and is equivalent to Verilog generate if/for

http://chisel.eecs.berkeley.edu/documentation.html

CS250, UC Berkeley Fall ‘11Lecture 04, Chesel(2)

End of HDLs/Chisel Introduction

30

Advanced Chisel Later:

Memory Blocks
Polymorphism and Parameterization

Higher-order Functions

