
CS250, UC Berkeley Spring 2016Lecture 01, Introduction 1

CS250  
VLSI Systems Design

Spring 2016

John Wawrzynek
with

Christopher Yarp (GSI)

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Why the heck is it CS250 and not
EE250?

2

‣ We answer that with a course history (with a few
embedded lessons).

 Warning: What follows is principally from memory. I’ve done my
best to be accurate, but some errors or misinterpretations might
exist.

Starts in 1958 with the invention of the Integrated Circuit independently
by Robert Noyce (co-founder of Fairchild Semiconductor
Corporation) and Jack Kilby (engineer at Texas Instruments).

CS250, UC Berkeley SP16Lecture 01, Intro

IC Design in the 70’s and early 80’s

The Intel 4004 microprocessor, which was introduced in 1971.
The 4004 contained 2300 transistors and performed 60,000

calculations per second. Courtesy: Intel.

Introduced to help
sell memory chips!

Federico Faggin,
Ted Hoff,

Stan Mazor

‣ Circuit design, layout, and processing tightly linked.

‣ Logic design and layout was “random”

‣ Chip design was the domain of industry (Fairchild, Intel, Texas
Instruments, …). These were IC processing companies. Those who
controlled the physics controlled the creative agenda!

3

CS250, UC Berkeley SP16Lecture 01, Introduction 1

"Listen to the silicon; find out what it's telling you."

Meanwhile at Caltech…
‣ Carver Mead was designing and building

prototype ICs (with help from his friends
at Intel)

‣ His background was in physical electronics
(invented several semiconductor devices
such as the GaAs MESFET) but was deeply
interested in the interaction of physical
implementation and the higher level design
of electronic systems:

4

CS250, UC Berkeley SP16Lecture 01, Introduction 1

CS At Caltech
‣ Ivan Sutherland became founding head of the computer science division at CIT

in 1974 (after leaving E&S)

‣ He and Mead teamed up to get the division off the ground making IC design
(Integrated Systems) a key component of the research and teaching.

‣ My take:

‣ These two believed that IC design was at the heart of computer science
because CS was largely about inventing and building computing devices.

‣ The future of computing was integrated circuits:

‣ Very flexible, “boundless” growth potential (was on an exponential grow
curve with no end in sight!)

‣ Close to “pure thought” with few constraints and “nasty realities”

‣ The potential of “LSI” was not going to be reached with the status quo in
industry.

‣ Worked together over the next 6 years to establish the faculty, industrial ties,
curriculum, research projects with silicon structures as a key component.

‣ They set off to build their own machines (OM1, OM2).
5

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Pushing forward (1)
‣ The reality of integrated circuits:
‣ Wires are expensive (area, delay, power), transistors are cheap.
‣ Pre-ICs, the opposite was true.

‣ Therefore, plan the communication and the layout
‣ Exploit locality, think about the “geometry” of the problem from

the beginning. Choose algorithms/designs accordingly.
‣ Algorithms/designs represented as communication graphs in a

large number of dimensions, not a good idea.

6

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Pushing Forward (2)
‣ Put IC design expertise into the hands of those best

qualified to take advantage of its potential:
‣ Those with intimate knowledge of computation and

algorithms: computer scientists!
‣ Traditionally, IC design had been stratified:

7

Algorithm /

architecture

Micro-

architecture

Circuit

design
Layout

‣ Emergence of the “tall thin designer”. Spans all levels of the
design and implementation stack.

‣ Would lead to more successful innovation and highly
optimized designs.

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Pushing Forward (3)
‣ How to enable system architects:
‣ Managing the complexity was the key challenge.

Manipulating multiple levels of design complexity was difficult
and projected to get much worse looking forward (remember
Moore’s Law).

‣ Providing universal access to IC fabrication.
‣ Solutions:
1. Ideas from software
2. New design representations
3. Computer aided design tools
4. Silicon “foundries”
5. Education

8

All linked

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Ideas from Programming 
(help manage complexity)

‣ “Structured Programming” was getting popular (Dijstra, el.
al.)
‣ No goto statements
‣ Block organization.
‣ Use of hierarchy, abstraction (sub-routines).

‣ “Structured Design” for ICs:
‣ Exploit regularity and symmetry
‣ Use and reuse common sub-blocks (flip-flops, gates, arithmetic,

etc.)
‣ Represent designs hierarchically

9

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Design Representations (1)
‣ Previously, to generate the mask information for fabrication,

the designed needed intimate knowledge of the manufacturing
process. Even once this knowledge was distilled to a set of
“Geometric Design Rules”, this set of rules was voluminous with
many special cases.

‣ Mead and associates come up with a much simplified set of
design rules (single page description). A sort of “API” or
abstraction of the process (back end processing could
automatically convert this information into masks).

10

‣ Sufficiently small set that
designers could memorize.

‣ Sufficiently abstract to allow
process engineers to shrink the
process and preserve existing
layouts.

‣ Process resolution becomes a
“parameter”, λ.

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Scalable CMOS Design Rules
‣ Created with

the transition
from nMOS to
CMOS (a much
nicer
technology),
around 1985.

‣ Little changed
over the years.

11

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Design Representations (2)
‣ Caltech Intermediate Form

(CIF)
‣ Capture layout information,

needed to generate masks and
process.

‣ ASCII text file with geometric
primitives and hierarchical
definitions.
‣ Simple and human readable.
‣ Easy to generate and parse.
‣ Common sub-blocks could be

reused from one design to the
next (output pad drivers, etc.)

12

A sample CIF "wire" statement. The statement is:
W25 100 200 100 100 200 200 300 200;

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Design Representations (3)
‣ Previously, designed were represented by hand drawings.

Then masks where made by transferring drawings to
rubylith.
‣ Base layer of heavy transparent dimensionally stable

Mylar. A thin film of deep red cellophane-like material
covers the base layer. Patterns formed by cutting (often
by hand) the transparent covering.

13

‣ Using an electronic format (CIF) meant:
‣ Layouts easily stored and transmitted
‣ Written to tape and transferred to manufacturer (tape out).
‣ Transmitted over the network (new idea back then).
‣ Software could automatically check for

layout errors.
‣ Generated from a program - huge idea.

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Design Representations (3)
‣ “Simplified” approach extended

upward.
‣ “Sticks” diagrams for layout:

‣ Simultaneously captures circuit
topology and geometry.

‣ Back end tool “fleshes out” real
geometry and compacts according

14

‣ For functional circuit descriptions, transistors as “switches”.
‣ Simple RC-based and “tau” timing models (later lead to “logical

effort”)
‣ Standard simple circuits for common functions. Previously,

designers had many tricks, and many alternative circuits.

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Computer Aided Design (1)
‣ Several advances lead to the development of interactive

tools for generating layout:
‣ Computer based layout representation (CIF).
‣ Advances in computer graphics (thanks to Ivan

Sutherland and friends) and display devices.
‣ Personal “workstation” (Xerox Alto - Chuck Thacker).

“Back room” computers didn’t have the necessary
bandwidth to the display.

‣ ICARUS (first such system?)
‣ Berkeley version - MAGIC

15

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Computer Aided Design (2)
‣ For some time after CIF was invented. Layout was generated by

hand, then typed in as a CIF file with a text editor.
‣ Layout compilers

‣ Soon some designers started embedding CIF primitives in
conventional programming languages: LISP, pascal, fortran, (later)
C.

‣ This allows designers to write programs that generated layout.
Such programs could be parameterized:

16

define GENERATE_RAM(rows, columns) {
 for I from 1 to rows
 for J from 1 to columns (GENERATE_BITCELL)}
GENERATE_RAM(128, 32);

‣ Lead to circuit/layout generation from higher level descriptions:
‣ Bristle-blocks (first “silicon compiler”, Dave Johanssen). Generated

processor architectures (datapaths) from high level specification
‣ Elements: adder, regfile, I/O block, … Width:16

‣ Eventually, Cadence and Synopsys formed out of Berkeley.

CS250, UC Berkeley SP16Lecture 01, Introduction 1

SIlicon Foundries
‣ Separate the designer from the fabricator: Modeled after the

printing industry. (Very few authors actually own and run
printing presses!)

‣ Simple standard geometric design rules were the key: these form
the “contract” between the designer and manufacturer.

‣ Designer sends the layout (in CIF format), foundry manufactures
the chip and send back. Designer promises not to violate the design
rules. Foundry promises to accurately follow layout.

17

‣ A scalable model for the industry:
‣ IC fab is expensive and complex
‣ Amortizes the expense over many designers

(batch processing with deep queues help).
‣ Designers and companies not held back by

need to develop and maintain large
expensive factories.

‣ “fabless” semiconductor companies - lots of
these and very few foundries.

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Multi-project Chips
‣ Silicon processing is optimized for high-

volume.
‣ Large minimum order, high fixed-price

(overhead), low per unit cost.
‣ While designing and characterizing new

designs (prototyping), what is needed is low-
volume low-cost production.

‣ Multi-project chips allowed multiple designers
to share one set of masks, a set of wafer.
Brings cost of production down to levels
appropriate for prototype runs.

18

CS250, UC Berkeley SP16Lecture 01, Introduction 1

(MOS implementation Service)
‣ For many years (1980-1996) fabrication was available (mostly

in the form of MPCs) to US universities for free (paid by NSF and
DARPA.

‣ Interestingly, DARPA originally saw this as a useful application of
the ARPAnet (later to be known as the Internet). ARPA had
invested to put this network together - world-wide-web and
email hadn’t happened yet, so ARPA was looking for a way to
justify their investment.

‣ The MOSIS project at USC/ISI collected designs from around the
country. Designs were FTPed to MOSIS, they brokered their
manufacturing with silicon foundries.

‣ Become THE way to do projects in classes (like CS250) and
research.

‣ Over 50,000 designs prototyped for universities, industry, and
government agencies.

‣ Continues today, subsidized by paying customers, with spare
space offered for free to universities.

19

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Education
‣ The new simple design representations made it easy to teach

and learn (even for computer scientists - remember the
original targets)

‣ Text book by Carver Mead and Lynn Conway, 1980.

20

‣ Presented elegant clear treatment of
physics, processing, circuits, and
design methodology for nMOS chips.

‣ Continued as the standard text, even
long after CMOS supplanted nMOS
(sadly never revised).

‣ Key to its success was the large design
example

‣ OM2 design becomes the model for all
microprocessor designs.

CS250, UC Berkeley SP16Lecture 01, Introduction 1

OM2

21

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Spreading the Word
‣ Limited printing (of chapters 1-3) were used as course notes

in 1977 by Mead at Caltech and Carlo Sequin at UC Berkeley.
‣ Chapters 1-5 1978 by Ivan Sutherland and Amr Mohsen at

Caltech, by Bob Sproull at CMU, Frohman-Bentchkowsky at
Hebrew University, Jerusalem, and by Fred Rosenberger at
Washington University.

‣ Prepublication of entire book, in fall of 1978, in courses at
Caltech and UC Berkeley, and by Kent Smith at the
University of Utah, and by Lynn Conway, while visiting MIT.

‣ Within a few years, this seminal text was adopted for chip
design courses at over 100 universities throughout the

22

CS250, UC Berkeley SP16Lecture 01, Introduction 1

At Berkeley (1)
1980-1988: VLSI course continues to be

taught by Professors Sequin, Patterson, &
Katz.

~1985: Students in advanced version of the
course with Sequin and Patterson, design
first two RISC processors. Working
closely with designers, Prof. Ousterhout
develops MAGIC IC design tools.

Late 80’s. Patterson returns to architecture
focus, Katz to OS/Networking, Sequin to
graphics.

1988: Berkeley hires Caltech grad (student
of C. Mead) to take over VLSI course.
Offers course many times through the
90’s.

23

CS250, UC Berkeley SP16Lecture 01, Introduction 1

At Berkeley (2)
‣ Through the 1990’s …
‣ EE141, EE241 develop to cover much of the same material (processing, CMOS

devices, circuits, sub-systems) however, 250 continues to be a practical
hands-on, experience-with-real-CAD-tools, design-a-real-chip course.

‣ VLSI chips start to grow in complexity past practical limits of university 1-
semester projects (super-scalar OOO, etc.).

‣ Late 90’s. Academic teaching/design/research focus shifts to FPGAs. Much
shorter “turn-around” time. FPGAs get large and practical for wide range of
applications.

‣ 1999: Most recent CS250 offering as a design course.
‣ Spring 2007: Offered as a survey course, no design project.
‣ 2009: Asanovic, Wawrzynek, Lazzaro revive CS250 as a design course.

Focus on Verilog synthesis and design space exploration. Strong connections
to research agenda.

– A lot has changed in 30 years! Many new challenges/opportunities on the way!
‣ What of the Mead/Sutherland methodology and ideas from 1980 still apply?
‣ Is there a new more appropriate methodology for the modern era

24

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Course Format (1)

‣ As with course from the ‘80s, VLSI design for
system architects.
‣ Focus on common ASIC design methodology:
‣ RTL synthesis and standard cell implementation.

No transistor level layout.
‣ Back to a “design centric course”. Learn by doing.
‣ Requires a lot of infrastructure set up (thanks to

Yunsup Lee, Brian Zimmer, Brian Richards)
‣ Entire class works implementing RISC processors.
‣ Many variations on a theme.
‣ More details later.

The new CS250 (as of Fall 2009)

25

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Course Format (2)
‣ Most closely related courses:
‣ EECS 151/251A - digital design. Prerequisite.
‣ CS 152/252 Computer Architecture / Microarchitecture.
‣ EE 242 Transistor level circuits and layout.
‣ EE 244 Computer Aided Design of ICs (CAD algorithms)

Course Theme:
How do we get the best design results from the standard

design flow using tradeoffs in area/performance/energy and
exploring microarchitectural alternatives.

26

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Course Structure
‣ Check Website Calendar/Info for details
‣ Weeks 1-5:
‣ Lectures on fundamentals of “ASIC” design
‣ Lab exercises to learn CAD tools
‣ Weeks 6-14:
‣ Project related activities
‣ Project group presentation (proposal,

progress, final report)
‣ “private project meetings” : instructors meet

in private with groups
‣ Grading: 5% Class Participation, 25% Labs, 70% Project
‣ Please, no Laptop/iPad/handheld use in class. We

will have a short break midway in each class so you can
catchup on email, etc.

27

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Some Important Dates (tentative)
‣ Lab 0 Due: Jan 26 (Tu)
‣ Lab 1 Due: Jan 28 (Th)
‣ Lab 2 Due: Feb 4 (Th)
‣ Project Proposal Due: Feb 11 (Th)
‣ Lab 3 Due: Feb 18 (Th)
‣ Oral Project Proposals: Feb 23/25 (Tu/Th)
‣ Lab 4 Due: Mar 3 (Th)
‣ Oral Project Status: Apr 5/7 (Tu/Th)
‣ Project Final Presentations: May 3/5 (Tu/Th RRR wk)
‣ Final Project Report: May 10 (Tu Exam wk)
‣ These are all hard deadlines, so please budget your time

accordingly. Total of 4 late days for labs.
28

CS250, UC Berkeley SP16Lecture 01, Introduction 1

More Course Details
‣ Discussion section TBD. Please complete the doodle poll.
‣ Very important for tips on doing the labs and project

‣ You will need to get a named instructional account to log onto
our servers installed with the CAD tools.

‣ Piazza for all Q/A, announcements, etc., check website.
‣ Instructor office hours on the web.
‣ Enrollment
‣ Undergrad: need to have taken CS150 or EECS151 (or

equivalent) with B+ or better.
‣ Grad: we assume you have taken undergraduate digital

design. If not, see us for remedial materials.
‣ Design Language
‣ For all, we assume Verilog/VHDL experience.
‣ However, we will be introducing you to our local hardware

design language, call Chisel (under construction.)
29

CS250, UC Berkeley SP16Lecture 01, Introduction 1

Project Details
‣ Project groups of 2 people.
‣ Leverage the existing RISC ISA (RISC-V) processor with co-

processor interface:
‣ Explore one or more micro-architectural variations to

improve performance or energy efficiency (e.q. super
pipelined, multi-threading)

‣ System Level optimizations:
‣ Domain specific accelerators (e.g. Crypto Engine)
‣ Chip multi-processor (many-core RISC-V)

‣ Other ideas are welcome. Make a good case, and do
necessary background work.

‣ Generate a set of VLSI implementations performing a design space
exploration determining the Pareto optimal points in the
performance, area, and energy efficiency space.

‣ Many more details in a few weeks.
30

CS250, UC Berkeley SP16Lecture 01, Introduction 1

End of Introduction
part 1

31

