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Why the heck is it CS250 and not 
EE250?
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‣ We answer that with a course history (with a few 
embedded lessons).   

 Warning:  What follows is principally from memory.  I’ve done my 
best to be accurate, but some errors or misinterpretations might 
exist. 

Starts in 1958 with the invention of the Integrated Circuit independently 
by Robert Noyce (co-founder of Fairchild Semiconductor 
Corporation) and Jack Kilby (engineer at Texas Instruments).
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IC Design in the 70’s and early 80’s

The Intel 4004 microprocessor, which was introduced in 1971. 
The 4004 contained 2300 transistors and performed 60,000 

calculations per second. Courtesy: Intel.

Introduced to help 
sell memory chips!

Federico Faggin, 
Ted Hoff, 

Stan Mazor

‣ Circuit design, layout, and processing tightly linked.    

‣ Logic design and layout was “random” 

‣ Chip design was the domain of industry (Fairchild, Intel, Texas 
Instruments, …).  These were IC processing companies.  Those who 
controlled the physics controlled the creative agenda!
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"Listen to the silicon; find out what it's telling you."

Meanwhile at Caltech…
‣ Carver Mead was designing and building 

prototype ICs (with help from his friends 
at Intel) 

‣ His background was in physical electronics 
(invented several semiconductor devices 
such as the GaAs MESFET) but was deeply 
interested in the interaction of physical 
implementation and the higher level design 
of electronic systems: 
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CS At Caltech
‣ Ivan Sutherland became founding head of the computer science division at CIT 

in 1974 (after leaving E&S) 

‣ He and Mead teamed up to get the division off the ground making IC design 
(Integrated Systems) a key component of the research and teaching. 

‣ My take:   

‣ These two believed that IC design was at the heart of computer science 
because CS was largely about inventing and building computing devices. 

‣ The future of computing was integrated circuits: 

‣ Very flexible, “boundless” growth potential (was on an exponential grow 
curve with no end in sight!)  

‣ Close to “pure thought” with few constraints and “nasty realities” 

‣ The potential of “LSI” was not going to be reached with the status quo in 
industry. 

‣ Worked together over the next 6 years to establish the faculty, industrial ties, 
curriculum, research projects with silicon structures as a key component. 

‣ They set off to build their own machines (OM1, OM2).
5
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Pushing forward (1)
‣ The reality of integrated circuits: 
‣ Wires are expensive (area, delay, power), transistors are cheap. 
‣ Pre-ICs, the opposite was true. 

‣ Therefore, plan the communication and the layout 
‣ Exploit locality, think about the “geometry” of the problem from 

the beginning.  Choose algorithms/designs accordingly. 
‣ Algorithms/designs represented as communication graphs in a 

large number of dimensions, not a good idea. 
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Pushing Forward (2)
‣ Put IC design expertise into the hands of those best 

qualified to take advantage of its potential: 
‣ Those with intimate knowledge of computation and 

algorithms: computer scientists! 
‣ Traditionally, IC design had been stratified:
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Algorithm / 

architecture 

Micro-

architecture 

Circuit 

design 
Layout 

‣ Emergence of the “tall thin designer”.  Spans all levels of the 
design and implementation stack. 

‣ Would lead to more successful innovation and highly 
optimized designs.
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Pushing Forward (3)
‣ How to enable system architects:  
‣ Managing the complexity was the key challenge. 

Manipulating multiple levels of design complexity was difficult 
and projected to get much worse looking forward (remember 
Moore’s Law). 

‣ Providing universal access to IC fabrication. 
‣ Solutions:   
1. Ideas from software 
2. New design representations 
3. Computer aided design tools 
4. Silicon “foundries” 
5. Education
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All linked
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Ideas from Programming 
(help manage complexity)

‣ “Structured Programming” was getting popular (Dijstra, el. 
al.) 
‣ No goto statements 
‣ Block organization. 
‣ Use of hierarchy, abstraction (sub-routines). 

‣ “Structured Design” for ICs: 
‣ Exploit regularity and symmetry  
‣ Use and reuse common sub-blocks (flip-flops, gates, arithmetic, 

etc.) 
‣ Represent designs hierarchically

9



CS250, UC Berkeley SP16Lecture 01, Introduction 1

Design Representations (1)
‣ Previously, to generate the mask information for fabrication, 

the designed needed intimate knowledge of the manufacturing 
process.  Even once this knowledge was distilled to a set of 
“Geometric Design Rules”, this set of rules was voluminous with 
many special cases. 

‣ Mead and associates come up with a much simplified set of 
design rules (single page description).  A sort of “API” or 
abstraction of the process (back end processing could 
automatically convert this information into masks). 
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‣ Sufficiently small set that 
designers could memorize. 

‣ Sufficiently abstract to allow 
process engineers to shrink the 
process and preserve existing 
layouts.   

‣ Process resolution becomes a 
“parameter”, λ.
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Scalable CMOS Design Rules
‣ Created with 

the transition 
from nMOS to 
CMOS (a much 
nicer 
technology), 
around 1985. 

‣ Little changed 
over the years.
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Design Representations (2)
‣ Caltech Intermediate Form 

(CIF) 
‣ Capture layout information, 

needed to generate masks and 
process. 

‣ ASCII text file with geometric 
primitives and hierarchical 
definitions. 
‣ Simple and human readable. 
‣ Easy to generate and parse. 
‣ Common sub-blocks could be 

reused from one design to the 
next (output pad drivers, etc.)
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A sample CIF "wire" statement. The statement is:  
W25 100 200 100 100 200 200 300 200;
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Design Representations (3)
‣ Previously, designed were represented by hand drawings.  

Then masks where made by transferring drawings to 
rubylith. 
‣ Base layer of heavy transparent dimensionally stable 

Mylar. A thin film of deep red cellophane-like material 
covers the base layer.  Patterns formed by cutting (often 
by hand) the transparent covering.
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‣ Using an electronic format (CIF) meant: 
‣ Layouts easily stored and transmitted 
‣ Written to tape and transferred to manufacturer (tape out). 
‣ Transmitted over the network (new idea back then). 
‣ Software could automatically check for 

layout errors. 
‣ Generated from a program - huge idea.
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Design Representations (3)
‣ “Simplified” approach extended 

upward. 
‣ “Sticks” diagrams for layout: 

‣ Simultaneously captures circuit 
topology and geometry. 

‣ Back end tool “fleshes out” real 
geometry and compacts according 
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‣ For functional circuit descriptions, transistors as “switches”. 
‣ Simple RC-based and “tau” timing models (later lead to “logical 

effort”) 
‣ Standard simple circuits for common functions.  Previously, 

designers had many tricks, and many alternative circuits.
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Computer Aided Design (1)
‣ Several advances lead to the development of interactive 

tools for generating layout: 
‣ Computer based layout representation (CIF). 
‣ Advances in computer graphics (thanks to Ivan 

Sutherland and friends) and display devices. 
‣ Personal “workstation” (Xerox Alto - Chuck Thacker).  

“Back room” computers didn’t have the necessary 
bandwidth to the display. 

‣ ICARUS (first such system?) 
‣ Berkeley version - MAGIC
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Computer Aided Design (2)
‣ For some time after CIF was invented.  Layout was generated by 

hand, then typed in as a CIF file with a text editor. 
‣ Layout compilers 

‣ Soon some designers started embedding CIF primitives in 
conventional programming languages:  LISP, pascal, fortran, (later) 
C. 

‣ This allows designers to write programs that generated layout.  
Such programs could be parameterized:
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define GENERATE_RAM(rows, columns) { 
    for I from 1 to rows 
  for J from 1 to columns (GENERATE_BITCELL)} 
GENERATE_RAM(128, 32); 

‣ Lead to circuit/layout generation from higher level descriptions: 
‣ Bristle-blocks (first “silicon compiler”, Dave Johanssen).  Generated 

processor architectures (datapaths) from high level specification 
‣ Elements: adder, regfile, I/O block, … Width:16 

‣ Eventually, Cadence and Synopsys formed out of Berkeley.
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SIlicon Foundries
‣ Separate the designer from the fabricator:  Modeled after the 

printing industry.  (Very few authors actually own and run 
printing presses!) 

‣ Simple standard geometric design rules were the key: these form 
the “contract” between the designer and manufacturer. 

‣ Designer sends the layout (in CIF format), foundry manufactures 
the chip and send back.  Designer promises not to violate the design 
rules.  Foundry promises to accurately follow layout.
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‣ A scalable model for the industry:  
‣ IC fab is expensive and complex 
‣ Amortizes the expense over many designers 

(batch processing with deep queues help). 
‣ Designers and companies not held back by 

need to develop and maintain large 
expensive factories. 

‣ “fabless” semiconductor companies - lots of 
these and very few foundries.
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Multi-project Chips
‣ Silicon processing is optimized for high-

volume. 
‣ Large minimum order, high fixed-price 

(overhead), low per unit cost. 
‣ While designing and characterizing new 

designs (prototyping), what is needed is low-
volume low-cost production. 

‣ Multi-project chips allowed multiple designers 
to share one set of masks, a set of wafer.  
Brings cost of production down to levels 
appropriate for prototype runs.
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(MOS implementation Service)
‣ For many years (1980-1996) fabrication was available (mostly 

in the form of MPCs) to US universities for free (paid by NSF and 
DARPA. 

‣ Interestingly, DARPA originally saw this as a useful application of 
the ARPAnet (later to be known as the Internet).  ARPA had 
invested to put this network together - world-wide-web and 
email hadn’t happened yet, so ARPA was looking for a way to 
justify their investment.   

‣ The MOSIS project at USC/ISI collected designs from around the 
country.  Designs were FTPed to MOSIS,  they brokered their 
manufacturing with silicon foundries. 

‣ Become THE way to do projects in classes (like CS250) and 
research. 

‣ Over 50,000 designs prototyped for universities, industry, and 
government agencies. 

‣ Continues today, subsidized by paying customers, with spare 
space offered for free to universities.
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Education
‣ The new simple design representations made it easy to teach 

and learn (even for computer scientists - remember the 
original targets) 

‣ Text book by Carver Mead and Lynn Conway, 1980.
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‣ Presented elegant clear treatment of 
physics, processing, circuits, and 
design methodology for nMOS chips. 

‣ Continued as the standard text, even 
long after CMOS supplanted nMOS 
(sadly never revised). 

‣ Key to its success was the large design 
example 

‣ OM2 design becomes the model for all 
microprocessor designs.
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OM2

21
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Spreading the Word
‣ Limited printing (of chapters 1-3) were used as course notes 

in 1977 by Mead at Caltech and Carlo Sequin at UC Berkeley. 
‣ Chapters 1-5 1978 by Ivan Sutherland and Amr Mohsen at 

Caltech, by Bob Sproull at CMU, Frohman-Bentchkowsky at 
Hebrew University, Jerusalem, and by Fred Rosenberger at 
Washington University. 

‣ Prepublication of entire book, in fall of 1978, in courses at 
Caltech and UC Berkeley, and by Kent Smith at the 
University of Utah, and by Lynn Conway, while visiting MIT. 

‣ Within a few years, this seminal text was adopted for chip 
design courses at over 100 universities throughout the 
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At Berkeley (1)
1980-1988: VLSI course continues to be 

taught by Professors Sequin, Patterson, & 
Katz. 

~1985: Students in advanced version of the 
course with Sequin and Patterson, design 
first two RISC processors.  Working 
closely with designers, Prof. Ousterhout 
develops MAGIC IC design tools. 

Late 80’s.  Patterson returns to architecture 
focus, Katz to OS/Networking, Sequin to 
graphics. 

1988: Berkeley hires Caltech grad (student 
of C. Mead) to take over VLSI course.  
Offers course many times through the 
90’s.
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At Berkeley (2)
‣ Through the 1990’s … 
‣ EE141, EE241 develop to cover much of the same material (processing, CMOS 

devices, circuits, sub-systems) however, 250 continues to be a practical 
hands-on, experience-with-real-CAD-tools, design-a-real-chip course. 

‣ VLSI chips start to grow in complexity past practical limits of university 1-
semester projects (super-scalar OOO, etc.). 

‣ Late 90’s.  Academic teaching/design/research focus shifts to FPGAs.  Much 
shorter “turn-around” time.  FPGAs get large and practical for wide range of 
applications. 

‣ 1999: Most recent CS250 offering as a design course. 
‣ Spring 2007:  Offered as a survey course, no design project. 
‣ 2009: Asanovic, Wawrzynek, Lazzaro revive CS250 as a design course.  

Focus on Verilog synthesis and design space exploration.  Strong connections 
to research agenda. 

– A lot has changed in 30 years!  Many new challenges/opportunities on the way! 
‣ What of the Mead/Sutherland methodology and ideas from 1980 still apply? 
‣ Is there a new more appropriate methodology for the modern era

24
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Course Format (1)

‣ As with course from the ‘80s, VLSI design for 
system architects.   
‣ Focus on common ASIC design methodology: 
‣ RTL synthesis and standard cell implementation.  

No transistor level layout. 
‣ Back to a “design centric course”.  Learn by doing. 
‣ Requires a lot of infrastructure set up (thanks to 

Yunsup Lee, Brian Zimmer, Brian Richards) 
‣ Entire class works implementing RISC processors. 
‣ Many variations on a theme. 
‣ More details later.

The new CS250 (as of Fall 2009)
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Course Format (2)
‣ Most closely related courses: 
‣ EECS 151/251A - digital design.  Prerequisite. 
‣ CS 152/252 Computer Architecture / Microarchitecture. 
‣ EE 242 Transistor level circuits and layout. 
‣ EE 244 Computer Aided Design of ICs (CAD algorithms)

Course Theme: 
How do we get the best design results from the standard 

design flow using tradeoffs in area/performance/energy and 
exploring microarchitectural alternatives.
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Course Structure
‣ Check Website Calendar/Info for details 
‣ Weeks 1-5:  
‣ Lectures on fundamentals of “ASIC” design 
‣ Lab exercises to learn CAD tools 
‣ Weeks 6-14: 
‣ Project related activities 
‣ Project group presentation (proposal, 

progress, final report) 
‣ “private project meetings” : instructors meet 

in private with groups 
‣ Grading: 5% Class Participation, 25% Labs, 70% Project 
‣ Please, no Laptop/iPad/handheld use in class.  We 

will have a short break midway in each class so you can 
catchup on email, etc.
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Some Important Dates (tentative)
‣ Lab 0 Due:                             Jan 26 (Tu) 
‣ Lab 1 Due:                             Jan 28 (Th) 
‣ Lab 2 Due:                             Feb 4 (Th) 
‣ Project Proposal Due:            Feb 11 (Th) 
‣ Lab 3 Due:                             Feb 18 (Th) 
‣ Oral Project Proposals:          Feb 23/25 (Tu/Th) 
‣ Lab 4 Due:                              Mar 3 (Th) 
‣ Oral Project Status:               Apr 5/7 (Tu/Th) 
‣ Project Final Presentations:  May 3/5 (Tu/Th RRR wk) 
‣ Final Project Report:              May 10 (Tu Exam wk) 
‣ These are all hard deadlines, so please budget your time 

accordingly.  Total of 4 late days for labs. 
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More Course Details
‣ Discussion section TBD.  Please complete the doodle poll. 
‣ Very important for tips on doing the labs and project 

‣ You will need to get a named instructional account to log onto 
our servers installed with the CAD tools. 

‣ Piazza for all Q/A, announcements, etc., check website. 
‣ Instructor office hours on the web.   
‣ Enrollment 
‣ Undergrad: need to have taken CS150 or EECS151 (or 

equivalent) with B+ or better. 
‣ Grad: we assume you have taken undergraduate digital 

design.  If not, see us for remedial materials. 
‣ Design Language 
‣ For all, we assume Verilog/VHDL experience. 
‣ However, we will be introducing you to our local hardware 

design language, call Chisel (under construction.) 
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Project Details
‣ Project groups of 2 people. 
‣ Leverage the existing RISC ISA (RISC-V) processor with co-

processor interface:  
‣ Explore one or more micro-architectural variations to 

improve performance or energy efficiency (e.q. super 
pipelined, multi-threading) 

‣ System Level optimizations: 
‣ Domain specific accelerators (e.g. Crypto Engine) 
‣ Chip multi-processor (many-core RISC-V) 

‣ Other ideas are welcome.  Make a good case, and do 
necessary background work.   

‣ Generate a set of VLSI implementations performing a design space 
exploration determining the Pareto optimal points in the 
performance, area, and energy efficiency space. 

‣ Many more details in a few weeks.
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End of Introduction 
part 1 
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