Discussion 5;
Connecting to Rocket

CS250 Spring 2016
Christopher Yarp

Work up to lab 4:

* You’vedone a lot of work in labs 1-3
e Constructed a SHA3 unit from a reference design

* Implemented unit tests to validate datapath
functionality

* Implemented integration tests to validate the
functionality of the unit

 Added configurable pipeliningto the datapath

* Modified the memory controllerto exploit multiple in-
flight requests

 Modified the design to use SRAMS

* Validated your design through RTL, Post-Synthesis, and
Post-PAR simulations

Lab 4

e The SHA3 unit was built

and tested in isolation

* Now, it is time to
connectit to a
processor!

* The instruction set of
the processor is RISC-V

* The processor
implementationis
called rocket

 We will use RoCCto
make the connection

RISC-V Rocket

Processor Core |

~
RoCC

Interface

cmd

~

> |l
Y

resp
M <
[l -

busy

L1
D-Cache

mem.req
T e
[l -

mem.resp

i 111
gLl

Accelerator

Instruction Set Architectures

* Instruction Set Architecture
(ISA)

e Defines the user
(programmer) facin
instructions available from
the processor

e Oftenincludesdetailsabout
register files (if used),
memory addressing, number
representations...

* May be paired with or
contain an explicit memory
model

e Basically, itis the contract
that any processor must
fulfill from the programmer’s

Eerspective (the HW/SW
ridge)

* Some popularISAs
* |A-32(x86)
« AMDG64 (x86-64, x64, EM64T)
« ARM/Thumb
* PowerPC
* RISCV

* The ISA is separate from the
implementation

* Many processorsimplement
x86-64

* Intel Core Series
e« AMD Athlon (newer versions)
* Regardless of which chip you

buy, it should run programs
compiled forits ISA

Typical Software Development

e Codeis Written in a High Level Language (ex. C) }

e Codeis compiledinto a ISA instructions
e Most ISAs have an assembly language

e Assembly is assembled into machine code (binary)
e Can be executed by the processor

C to Assembly

C Program Assembly
#include <stdint.h> .file "hello.c"
.text
int64 t add3Nums(inté64_t a, -align 2
int64 t b, .globl add3Nums
. - .type add3Nums,
inte4_t c) @function
{ add3Nums:
lnt64_t d = a+b+C; add a0, a0, al
add a0,a0,a2
return d; ret
} .size add3Nums, .-
add3Nums

.ident "GCC: (GNU) 5.3.0"

RISC-V Instructions/Formats

Instruction Formats:

31 27 26 25 24 20 19 15 14 12 11 7 6
funct7 rs2 rsl funct3 rd opcode R-type
imm|11:0 rsl funct3 rd opcode I-type
imm|11:5] rs2 rsl funct3 | 1imm|4:0] opcode S-type
imm |[12|10:5] rs2 rsl funct3 | imm|4:1|11 opcode SB-type
imm|31:12] rd opcode U-type
immm|20|10:1|11|19:12 rd opcode Ul-type
Some Example Arithmetic Instructions (Not full List)
0000000 rs2 rsl 000 rd 0110011 ADD rd,rsl,rs2
0100000 rs2 rsl 000 rd 0110011 SUB rd,rs1,rs2
0000000 rs2 rsl 001 rd 0110011 SLL rd,rsl,rs2
0000000 rs2 rsl 010 rd 0110011 SLT rd.rsl.rs2
0000000 rs2 rsl 011 rd 0110011 SLTU rd,rsl.rs2
0000000 rs2 rsl 100 rd 0110011 XOR rd,rsl,rs2
)) A full list for the base ISA
Custom Instructions with RoCC can be found on page 50
31 25 24 20 19 15 14 13 12 11 76 Of User Level ISA
| funct? | rs2 | rsl | xd | xs1 | xs2 | rd ‘ opcode . .
7 5 5 T 1 1 5 7 Specification v2.0 at

roccinst[6:0] src2 srcl dest

custom-0/1/2/3

http://riscv.org/specificat
ions/

Jsing Custom Instructions in
°rograms

e Custom Instructions are understood by the RISC-V
assembler

* They are denoted: customO, custom1, custom?2,
custom3

* How do you call your accelerator froma C
program?

e Simple Case: Inline Assembly

Inline Assembly

* Syntax
asm [volatile] (AssemblerTemplate

: Output Operands
[: InputOperands
:Clobbers])

Volatile — means the assembly instruction has side
effects and should not be removed by the compiler

Info from: https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

nline Assembly for Custom
nstructions

Assembly Format:
custom@ rd rsl rs2

Example from SHA3:
asm volatile ("custom@ @, %[msg addr], %[hash addr], o"
[msg_addr]"r"(&maddr),
[hash_addr]"r" (&haddr));

This example had no rd

maddr and haddr are variables in the C program

The & takes the address of these variables

The ”"r” is a constraint that specifies that a register operand is allowed

Info from: https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

Inline Assembly With Return

* Example
asm volatile ("custom@ %[rd], %[rsl], %[rs2], ©”
[rd]"=r"(rd)
[rs1]"r"(rd), [rs2]"r"(rs2));

 When writing, and = or + is used at the start of the
constraint
 =when a variable is being overwritten
* + when reading and writing

e =can be used when the write operand is also one of the
inputs

Info from: https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

Fencing

 When calling an assembly instruction, you may
need to call fence first

e asm volatile("fence")

 Memory transactions are not always complete
when an assembly instruction is called

* Fence forces the processor to wait for memory
operations to complete before proceeding

RISC-V Toolchain

* RISC-V provides a full software toolchain for you
e gcc/g++
e LLVM/clang
* |ISA simulator (spike)

* Allowsyou to test programs written foran ISA beforea chip is
even available.

* Relieson a model of what differentinstructions do
* You will extend spike in lab4
* Since the serversused for the lab are x86_64
machines, you will be using a cross compiler

* A compilerthat produceda binary for a different
processor than used by the development machine

Rocket Emulation

* A C++ emulator and RTL cycle accurate simulator
can be compiled for rocket-chip

* You can use these emulators/simulators to run
RISC-V binaries!

 The C++ emulator is typically much faster than the
RTL simulator

Running Bare-Metal with the
Proxy Kernel (pk)

* You will be running rocket bare-metal
* This means without an operating system

e Several C functions rely on an operating system
being present
* To execute system calls
* To manage page faults
* And several other things

* The Proxy Kernel (pk) is a light weight piece of code
that implements the essential features of an OS
required for a simple C program to run

