CS250 Discussion 4
SRAMSs

Spring 2016
Christopher Yarp

Lab 3 Preview

* In lab 2, you changed the memory controller to
take advantage of multiple in flight requests

* You also experimented with pipelining

* In lab 3 you will experiment with:
* Replacing the message buffer with an SRAM
e Using a multi-Vt flow
* Writing a script to parse reports

Why use SRAM Arrays?

* SRAMs are typically denser than flip-flop arrays*
* Not necessarily true for very small arrays
* Not necessarily true for large numbers of ports

e Static, meaning they hold state as long as power is
applied
* DRAM requires periodic refreshing of charge on
capacitor

e Faster than DRAM

e Standard CMOS (no need for special DRAM
process)

A good reference is CMOS VLSI Design: A Circuit and Systems Perspective (4t ed) by Weste and Harris

Flip-Flop Arrays vs. SRAMS

Flip-Flop Arrays (Registers)

e Can access as many
elements at a time as
you want (may need
multiplexers to select)

* Can read the previous
value from an element
while writing the new
one

SRAMs

* Number of ports limits
how many simultaneous
reads/write you can do at
once

 Read and write portsare
not always the same

* Simultaneously reading
and writing the same
elements may produce
unexpected result

e Unlikely to behave like
register

The Current Solution

1 Mem Req

Buffer (Flip-Flops) State (Flip-Flops)

msgChunk[0] oldState[0]

oldState[1]

5 msgChunk[2] oldState[2]

msgChunk]3] oldState[3]

Memory 0|dState[14]

Mem oldState[15]

Resp oldState[16]

1) Send Requests to Memory

2) Place Responses Into the Buffer (only one response at a time but possibly out of order)

The Current Solution

3
Buffer (Flip-Flops) State (Flip-Flops)
msgChunk[0] D newState[0]
msgChunk[1] | @ newState[1]
msgChunk[2] | ® newState[2]
msgChunk[3] | o) newState[3]
Memory msgChunk[14] | D newState[14]
msgChunk[15] | @ newState[15]
msgChunk[16] | @ newState[16]

0 pT X L

3) Absorb by XOR-ing each buffer entry with the old state (simultaneously)

The Current Solution

Buffer (Flip-Flops) State (Flip-Flops)
msgChunk[0] workingState[O0]
msgChunk[1] workingState[1]
msgChunk[2] workingState[2]
msgChunk]3] workingState[3]

Memory msgChunk[14] workingState[14]
msgChunk[15] workingState[15]
msgChunk[16] workingState[16]

4

4) Start the data path

The SRAM Solution

1 Mem Req

Buffer (SRAM Single Port) State (Flip-Flops)

msgChunk[0] oldState[0]

oldState[1]

5 msgChunk[2] oldState[2]

msgChunk]3] oldState[3]

Memory oIdState[14]

Mem oldState[15]

Resp oldState[16]

1) Send Requests to Memory

2) Place Responses Into the Buffer (only one response at a time but possibly out of order)

The SRAM Solution

Memory

Buffer (SRAM Single Port)
msgChunk[0]
msgChunk[1]
msgChunk[2]
msgChunk]3]

msgChunk[14]
msgChunk[15]
msgChunk[16]

3

®
®

State (Flip-Flops)

newState[0]

newState[1]

oldState[2]

oldState[3]

oldState[14]

oldState[15]

oldState[16]

pTt X L

3) Absorb by XOR-ing each buffer entry with the old state (one word at a time)

The SRAM Solution

Memory

4) Start the data path

Buffer (SRAM Single Port)
msgChunk[0]
msgChunk[1]
msgChunk[2]
msgChunk]3]

msgChunk[14]
msgChunk[15]
msgChunk[16]

State (Flip-Flops)

workingState[O0]

workingState[1]

workingState[2]

workingState[3]

workingState[14]

workingState[15]

workingState[16]

4

prt| | x L

Multi Vt Flow

e Until now, you have only been using standard cells
with one Vt

* Changing the Vt effects the speed and power of
cells
e LVT — faster but more power hungry
 HVT —slower but less power hungry

* Tool will place LVT cells on the critical path to speed
it up and will place HVT cells outside of the critical
path to save power

Parsing Reports

* There are several scripting languages that you can
use

e Python, ruby, perl, awk, sed, ...
e Doesn’t really matter what language you use.

* Regex will probably be your friend
* There is a tutorial for python at
https://docs.python.org/2/howto/regex.html

* Take pride in your script ... it will probably help you
in your project!
e Good script writing: taking more time initially to save a
bunch of time later

