CS250 Discussion 2
RISC-V, Rocket, and RoCC

Spring 2016
Christopher Yarp

What’s new in Lab 2:

* Inlab 1, you built a SHA3 unit that operates in
isolation

 We would like Sha3Accel to act as an accelerator
for a processor

* Lab 2 introduces the interface we will use to
connect Sha3Accel to a processor

RISC-V

* RISC-V is a new Instruction Set Architecture (ISA)
developed at the Aspire Lab

* |[tis designed to be a simple and open

* |s intended for education and research (although there
is commercial interest as well)

* |[tis not architected for any particular microarchitecture
(out-of-order, microcoded ...)

* Has 32 bit, 64 bit, and 128 bit options for address space

* Supports the inclusion of accelerators by defining
“custom” instruction in the ISA spec

More info at http://riscv.org/

Rocket

* Rocket is one implementation of the RISC-V ISA

* Rocket is a 64 bit implementation that has an
integrated L1 and L2 data cache

* A special interface, known as the RoCC interface,
was defined to help attach accelerators to Rocket

* We will be integrating Sha3Accel with Rocket

More info at https://github.com/ucb-bar/rocket-chip

Custom Instruction Format

* The RISC-V specification is rather general on
creating custom instructions

* The RoCC accelerators follow a standard instruction
format
* 2 register values can optionally be passed to the
accelerator
* An optional destination register can also be passed to
the accelerator

e Afunction code is passed to the accelerator and can be
used to trigger specific behaviorin the accelerator

31 25 24 20 19 15 14 13 12 11 76
funct? rs2 rsl xd | xsl | xs2 rd opcode
7 5 5 1 1 1 5) 7

roccinst [6:0] src2 srcl dest custom-0/1/2/3

The RoCC Interface

 The RoCCinterface is splitinto
several wires and bundles

cmd is a decoupled interface
that carries the 2 register
values alongwith the entire
instruction

resp is a decoupled interface
thatcarries the valuetobe
writteninto the destinationreg

busysignalsto the processor
that the acceleratoris busy

mem.req is a decoupled
interface that carries memory
requests

mem.resp is a decoupled
interface that carries a
response toa mem request

RISC-V Rocket (RoCC h Accelerator
Interface
cmd
> Il >
resp
Processor Core |« T
busy
mem.req
I~
11—
L1
D-Cache mem.resp
> _ >
o /

Simplified View of RoCC

The Memory Sub-System

* The memory system operates in a request-response
manner

* Load and store requests are passed to the memory
system

 Later, a corresponding memory response will be passed
to the accelerator

* Multiple memory transactions can be “in flight” at the
same time

* The number of “in flight” requests supported is specified
when rocket is instantiated

* Transactions are not guaranteed to occur in order
* A tag field is used to differentiate responses

class (implicit p: Parameters)
extends CoreBundle()(p) {
val = Decoupled(new
RoCCCommand).flip
val = Decoupled(new RoCCResponse)
val = new

HellaCachelO()(p.alterPartial({ case
CacheName=>"L1D" }))
val busy = Bool(OUTPUT)

override def cloneType = new
RoCClnterface().asInstanceOf[this.type]

Wires

The source for RoCC can be found in rocc.scala
https://github.com/ucb-
bar/rocket/blob/master/src/main/scala/rocc.scala

class (implicit p:
Parameters) extends CoreBundle()(p) {
val = new RoCClnstruction
val rs1 = Bits(width = xLen)
val rs2 = Bits(width = xLen)

}
class extends Bundle {
val funct = Bits(width = 7)
val rs2 = Bits(width = 5)
val rs1 = Bits(width =5)
val xd = Bool()
val xs1 = Bool()
val xs2 = Bool()
val rd = Bits(width = 5)
val opcode = Bits(width = 7)
}
Class (implicit p:

Parameters) extends CoreBundle()(p) {
val rd = Bits(width = 5)
val data = Bits(width = xLen)

}

class RoCClnterface(implicit p: Parameters)
extends CoreBundle()(p) {
val cmd = Decoupled(new
RoCCCommand).flip
val resp = Decoupled(new RoCCResponse)
val mem = new
HellaCachelO()(p.alterPartial({ case
CacheName => "L1D" }))
val busy = Bool(OUTPUT)

//many lines used for advanced features ...

override def cloneType = new
RoCClInterface().asInstanceOf[this.type]

//Class is comprised of many inherited traits
//Effective interface is:
class HellaCacheReqg(implicit p: Parameters){
val addr = Ulnt(width = coreMaxAddrBits)
val tag = Bits(width =
coreDCacheReqTagBits)
val cmd = Bits(width= M _SZ)
val typ = Bits(width = MT_SZ)
val data = Bits(width = coreDataBits)

v

class HellaCachelO(implicit p: Parameters)
extends CoreBundle()(p) {
val req = Decoupled(new HellaCacheReq)
val resp = Valid(new HellaCacheResp).flip
//morelines we don’t use

'

Bundles The source for the cache can be found in
. nbdcache.scala

Wires

https://github.com/ucb-bar/rocket/blob/
master/src/main/scala/nbdcache.scala

//Class is comprised of many inherited traits
//Effective interface is:
class HellaCacheResp(implicit p: Parameters){
val addr = UInt(width = coreMaxAddrBits)
val tag = Bits(width =
coreDCacheReqgTagBits)
val cmd = Bits(width = M _S7)
val typ = Bits(width = MT_SZ)
val data = Bits(width = coreDataBits)
//we don’t typically use the greyed out
wires above
//morelines we don’t use

Chisel Parameters -> CDE

* A decision was made to partition advanced chisel
parameters into a separate package: Context
Dependent Environments (CDE)

* These parameters take the form of a key-value store
* They are different from function parameters

* It has a similar syntax to advanced chisel
parameters but a couple changes are required

* import

import

* class Sha3Accel() extends
SimpleRoCC()(p)

Scala Implicits

 Scala implicit parameters are just like regular
parameters

* You can pass a compatible argument to them just like
you normally would in a function call

* However, if you do not pass an argument to the
function when you call it, one will be filled in for
you

 The compiler will lookinto the current scope and
attempt to identify a candidate to pass automatically

Information from http://docs.scala-lang.org/tutorials/tour/implicit-parameters.html and
http://docs.scala-lang.org/tutorials/FAQ/finding-implicits.html

CDE Use of Implicits

* Instead of defining a global key-value store,
modules using CDE receive a cde.Parameters object
and pass a cde.Parameters object to each sub-
module

* The CDE module passed to the sub-modules can be the
same as the parent or different

* Why do this?
 Sometimes, you want parameterizations to changed

based on the context within the design.

* Ex. You maywant one submoduleto use a different width than
another

Example of CDE in Lab 2

import
import

case object extends
case object extends

class Sha3Accel() extends SimpleRoCC()(p){

//parameters
valW =
valS =

//more wires

CDE Parameters for Design Space
Exploration

* If you parameterize your design, it is easy to try
different configurations and observe tradeoffs

 Wouldn’t it be great if the process was automated?
* If you use CDE, there is an automated flow!

* The tools are called Jackhammer and bar-crawl
* Jackhammer produces the different configurations

e bar-crawl partitions and distributes the jobs across a
cluster

e More on this later!

P

A Quick Example of a
Configuration and Knobs

class DefaultConfig() extends Config{

override val :‘World.TopDefs={
(pname,site,here) =>pname match {
case => 64
case => Knob("stages")
}}
override val topConstraints:List[ViewSym=>Ex[Boolean]] = List(
ex =>)
ex =>

override val knobValues:Any=>Any = {
case "stages"=>1
}
}

