CS250 - Discussion 1
Chisel + Scala Primer

Christopher Yarp
Jan. 2016

The Chisel Software Architecture

Chisel / \

(Hardware Construction Language)
Domain Specific Language

SBT
Scala (Build Tool for Scala)
(General Functional / Object Oriented Language) Build Tool,

Package Manager
Java / Java Runtime Environment (JRE)

(General Object Oriented Language and Runtime)
Cross Platform, Heavily Documented, Large Standard Library \ /

SCALA

Running Scala Interactively

Scala provides a REPL
(Read-Evaluate-Print
Loop) interface

Can be accessed using
sbt

> sbt console

Can use this to try out
scala snippets ...

— Orjustas a cool
calculator!

File Edit View Terminal Go Help

bash-4.1% sbt console

Java HotSpot(TM) 64-Bit Server VM warning: ignoring option
MaxPermSize=4G; support was removed in 8.0

[info] Set current project to c¢s250-ta (in build file:/hom
e/cc/cs250/spl6/staff/cs250-ta/)

[info] Starting scala interpreter...

[info]

Welcome to Scala version 2.10.2 (Java HotSpot(TM) 64-Bit S
erver VM, Java 1.8.0 72).

Type 1in expressions to have them evaluated.

Type :help for more information.

scala> val a = 1
a: Int

scala>
b: Int

scala>
c: Int

scala> exit
warning: there were 1 deprecation warning(s); re-run with
-deprecation for details

[] Total time: 32 s, completed Jan 24, 2016 11:05:1
8 PM
bash-4.1% |}

Semicolons & Ending Statements

* Semicolons are usedin C Valid Scala Syntax:
type languages to denote

the end of a statement val a =1 + 2 //preferred

* Scala usesthem for the val a =1+ 2

same purpose val a = 4; val b = 5; val c = a+b
* Scala alsoinferslineends . ., .,

as the end of a statement 2+ 3)

— Exceptif the line endsin =,
{, (, oran operator

 Semicolons can be used
to separate statementsin
a single line

Information from Programming Scala, 2nd Edition by Dean Wampler and Alex Payne

Different Function Call Syntax

* Typical Java syntax is also typicallyvalid scala syntax

 Methods with no arguments can omit ()
— object.fun () isequivalenttoobject. fun

* Methodswith no arguments can be called with a postfix
syntax (no longer recommended as semicolons are optional)
— object.fun () isequivalenttoobject fun

 Methods with one argument can be called with infix notation
— object.oneArg (5) isequivalenttoobject oneArg 5

— Infix notation should only be used for purely functional method (no
side effects) or methods that take a function as a parameter

— Should be used for high-order functions (map, foreach, ...)

Information from Scala Style Guide: http://docs.scala-lang.org/style/method-invocation.html

val VS. var

e val defines a constantvalue
e var defines a variable
* vals are preferred in Scala

 Note that if val is a reference to an object, the

underlying object may be modified but the
reference cannot be changed

Information from Scala for the Impatient by CayS. Horstmann
Scala Documentation: Concrete Mutable Collection Classes: http://docs.scala-
lang.org/overviews/collections/concrete-mutable-collection-classes.html

Why are vals preferred?
Functional Purity

* A pure function is one that has no side effects

A functionhas aside effectwhen it relies on or changes some
external state

* A purefunctionswill alwaysyield the same return value with the
same input data (arguments)

* Purely functional languages (Scalais not one) only allow pure
functions

* You have been writing pure functions fora long time ... in math
class!

— f(x) =x*x+2x + 1isa purefunction!
* varsare mutable and representstate, vals areimmutable
e I|deally,one would havesome inputand apply severalfunctionsto it

Information from Scala for the Impatient by CayS. Horstmann

Defining Functions

e Functions:

— def fctnName (a: Type, b: AnotherType): ReturnType = {
function body ..}

— def addInt(c: Int, d: Int) = ¢ + d

— The return type is optional, the argument types
are mandatory

— If recursionis used, return type is mandatory

* Procedures: Functions without a return value

— def procedureName (a: Type, b: AnotherType) {procedure
body ..}

— def printMe(a: Int) {println("Val="+a)}

Information from Scala for the Impatient by CayS. Horstmann

class vs. object

* Classes are very similar to Java classes

— They define a sort of template from which objects
can be instantiated.

— They have member vals, vars, and functions
(called methods when defined in a class)

— When you have an object, you can call it’s class
methods using the standard object.method()
syntax

Information from Scala for the Impatient by Cay S. Horstmann

class vs. object

* The object keyword is used to describe
singleton objects

— A singleton object only has only one instance

— You can think of it as defining a class and
instantiating it only once

Information from Scala for the Impatient by Cay S. Horstmann

class vs. object

Companion Classes

* Why is there an object keyword?

e Java classes allow static methods and variables

— Functions andfields that can be called without an object
* Class.Function, Class.Feild
— They can serve many usesincluding helper functions, factories,
and more

e Scala does not allow static methods to be declared in
classes

* |nstead, scala defines companion objects with the same
name as the class.

e Static methods are placed in the companion object

* Because the companion object has the name name as the
class, a call to Class.method is actually a call to the method
in the companion object

Information from Scala for the Impatient by Cay S. Horstmann

The apply function

* The apply functionis syntactic sugar to
overload the () operator.

* You can define an apply method in classes that
allow you to use object(arg) in your code

* You can define an apply function in the
companion object typically to act as a factory
(returns an object of the companion class).

Information from Scala for the Impatient by Cay S. Horstmann

The apply function

class MyClass (name: String, id: Int) {
var myName = name
var myId = 1d
def printMe () {println (myName + " ID: " + myId)}
def apply () = myId
def apply(a: Int) {myId = a}}

object MyClass {
def apply(s: String) = new MyClass (s, 0)
}

val a = MyClass ("bob™")
a.printMe () OUtpUt

a(10) bob ID: 0
a.printMe () bob ID: 10

When to use new?

e new Will call the constructor

* val a = MyClass ("bob") callsthe
apply function in the companion object

* val b = new MyClass ("bob", 10)
calls the constructor

Information from Scala for the Impatient by Cay S. Horstmann

Control Statements and Loops

e |f/else While
— Like Java — Also like Java
1f (n<len) { while (n<len) {
//do something} //do something
else 1f (n==len) { }
//do something
} else {

//do something
}

Information from Scala for the Impatient by CayS. Horstmann

Control Statements and Loops

* For
— Not like Java
for (1 <= 0 until len) {
//do something
}

— Also supports special syntax for nested loops

for (i <- 0 to lenl; j <- 0 until for (i <- 0 to lenl){
len2) { for (j <- 0 until len2) {
//do something //do something

} }

Information from Scala for the Impatient by CayS. Horstmann

Control Statements and Loops

* For
— Well ... actually like Java but the for each variant
— Can loop over elements in collection (using an iterator)

— In the previousforloops, 0 until len createsa
Range that can be iterated over.

val a = Seqgq(l, 2, 3, 4, D)

for (1 <- a){
//1 takes the value of each
//element in the sequence a
println (1)

Information from Learning Scala by Jason Swartz

Ranges

 Ranges are used in * val a = 0 to 5
several parts of scala —a=(0,1,2,3,4,5)
— Especiallyin for loops * val b = 0 until 5

- b=(0,1,2,3,4)
e val ¢ = 0 to 4 by 2

 Ranges are sequences
of numbers that

— Start at one number —¢c=(0,2,4)
(inclusive) * val d = 1.5 to 3.0
— End at another number by 0.5

(inclusive or exclusive) — d=(1.5, 2.0, 2.5, 3.0)

— By some increment

Information from Programming Scala, 2nd Edition by Dean Wampler and Alex Payne

Matching

e Like a C switch statement V&t & = sea(8, 6, 7, 5,3, 0, 9)

but much more powerful . i <~ 4),

e Can match on values, R

case if 1 > 5 => "over"

types, Boolean cace o L wrigan
expressions, and more! case _ => "under"
. . }
* A bit advanced for this orintln (rtn)

course but good to know
if you come across it

* Related to partial
functions

Information from Programming Scala, 2nd Edition by Dean Wampler and Alex Payne

Tuples

* Tuplesaresimply ordered val stuff = (3, 5.6,
: "hello")
collections of data _
, stuff: (Int, Double, String) =
* Thevaluescannotbeiterated (3,5.6,hello)
over println(stuff. 1)
e Dataintuplesdonotneedto 3
have the same type println(stuff. 2)
« Datafrom tuplescan be extracted 5.6
using a special syntax where the println(stuff._3)
index startsfrom 1 hello
* Therelationoperator —>is .
syntacticsugar for making 2- val keyvalPair = "name”
y g g > "OSki"

tuplesandis targeted at key- keyValPair: (String, String) =
value pairs (name,Oski)

Information from Programming Scala, 2nd Edition by Dean Wampler and Alex Payne

Functions as “First Class Citizens”

* You have seen that you can assign a number to a

val or var
—val a = 5
* You can also assign a function to a val or var!
—val a = scala.math.abs
—a(-9)
— 5

— The space, underscore specifies that you want to
assign the function to a and not the value returned

* Functions can actually be passed around, just like
numeric values!

Information from Scala Cookbook by Alvin Alexander

High Order Functions

. def highOrder(a: Int, b: Int, c:Int,
* ngh Order fun: (Int, Int) => Int) = {
Functions either: val tmpl = fun(a, b)

) val tmp2 = fun (b, c)
— take a function

as an argument

fun (tmpl, tmp2)

——

— return a function
highOrder: (a: Int, b: Int, c: Int, fun:

° Why functions (Int, Int) => Int)Int

can be passed! def addInt(a:Int, b:Int) = a + b
addInt: (a: Int, b: Int)Int

val result = highOrder (2, 5, 7, addInt)
result: Int = 19

Information from Becoming Functional by Joshua Backfield
Scala Cookbook by Alvin Alexander

Anonymous Functions

* |tseems sillytodefinea function
like addInt if we onlypassitto

high order functions

e Whatwe would likeis define the

function we wantinside the
function call

 We cando this with anonymous

functions!

* Anonymous functions are
sometimes called lambda
functions, closures, or function
literals

e Thereis a subtle difference

between lambda functionsand

closures

def highOrder(a: Int, b:
Int, c:Int, fun: (Int,Int)
=> Int) = {

val tmpl = fun(a, b)
val tmp2 = fun (b, c)
fun (tmpl, tmp2)

val result = highOrder (2,
5, 7, (a, b) => a+b)

result: Int = 19

Types are not needed since the
inference engine infers the types of a
and b from highOrder

Information from Becoming Functional by Joshua Backfield

Scala Cookbook by Alvin Alexander

Anonymous Functions

* Thereis even more
syntactic sugar for
anonymous functions!

 Underscorescan be
used “as positionally
matched arguments”

def highOrder (a: Int, b:
Int, c:Int, fun: (Int,Int)
=> Int) = {

val tmpl = fun(a, b)
val tmp2 = fun (b, <)

fun (tmpl, tmp2)

val result = highOrder (2,
op 1y)

result: Int = 19

Information from Scala Style Guide: http://docs.scala-lang.org/style/method-invocation.html

The Underscore

* The underscore is the wildcard character in
Scala

* |tis used in several contexts
— Import statements to import all sub packages
— In match statements to act as a placeholder
— In assigning a function to a val

— Anonymous functions to act as a placeholder

Useful High Order Functions

These functions take a Sequence or List and perform some
operation

* Map

— Appliesa function to each element in a list and returns the
resulting transformin a list

* Filter

— Generates a new list with elements of the original list that fit
some filter condition

* foldLeft, foldRight

— A reduce operation wherea list is traversed either from the left
or from the right. In each step, a functionis preformedon the
list element and the result of the last fold operation, returninga
single value.

— Results in a single value at the end of evaluation

Information from Programming Scala, 2nd Edition by Dean Wampler and Alex Payne

zip, zipWithIndex and unzip

 Sometimes, you want to pairup values in two lists. You can do this
with zip
val listl = Seqg(l, 2, 3, 4)
val list2 = Seqg(5, 6, 7, 8)
val zipped = listl zip list?2
zipped: Seq[(Int, Int)] = List((1,5), (2,6),
(3,7), (4,8))
 Unzip splits a list of tuples into a tuple of lists
val unzipped = zipped.unzip
unzipped: (Seqg[Int], Segl[Int]) = (List(l, 2, 3,
4),List (5, o6, 7, 8))
* zipWithIindexzips each value with its index in the list
scala> val 1listlWInd = listl.zipWithIndex

listlWInd: Seqg[(Int, Int)] = List((1,0), (2,1),
(3,2), (4,3))

Information from Scala Cookbook by Alvin Alexander

CHISEL

Why val and not var?

 Like scala, chisel prefers using vals when
possible

* Given that chisel is constructing a circuit,
chisel constructs often represent physical
things like nets, registers, ...

* |t can be easier to reason about the circuit
when constructs are assignhed a unique,
constant name (within a scope).

What is going on with :=7?

Since we like to use vals when declaring chisel
constructs, how do we make circuit assignments?

Scala won’t let you use =

.= is a special operator defined by chisel to
represent circuit connections (similar to
assignment in Verilog)

— It defines which chisel constructs should be connected
and in which cases

— The when block will put in multiplexers as appropriate

Data about connectionsis used by chisel to build
a graph representation of the circuit

Scala vs. Chisel Types

* Scala and Chisel have differenttypes
 Thisis because chisel needs informationthat Scala does not
— Bit width information

 Unfortunately, the type inference system that Scala uses does not work
as well with Chisel types.

— Type promotionis not necessarily automatic (an artifact of Chisel’s
implementation

* You may need to cast between Scala and Chisel types
* You may need to cast between Chisel types

val a = UInt(l, width=8)

a.toBits //converts to bits

val b = 5

val ¢ = Uint (b, width = 8) //cast from Int to UInt
// (actually construct ob7j)

Errors and Chisel

e Because Chisel is built on Scala and Scala is
Built on Java, you can get 3 kinds of error
messages

— Scala compiler errors: Type mismatches, syntax, ...

— Chisel checks: lllegal chisel but legal scala

— Java Stack Trace: Underlying implementation
crashed

Exercise in Debugging

Problem: Types

— Chisel Type
Expected

— “Compile Time’
Error
Solution

— Explicitly Cast
to Chisel Type

)

val index = Reg(init = UInt(@, width = log2Up(n)))

val memVal = UInt(width = w)

val done = !io.en && ((memVal === io.data) || (index === UInt(n-1)))
/] een

when (io.en) {
index := UInt(0)

} .elsewhen (done === Bool(false)) {
index := index +

}

1 [| 1 1
LiTie INUITioer :

ms/DynamicMemorySearch.scala:24: overloaded method value + with alternatives:
[error] (b: Chisel.SInt)Chisel.SInt <and>

[error] (b: Chisel.UInt)Chisel.UInt <and>

[error] (b: Chisel.Bits)Chisel.Bits

[error] cannot be applied to (Int)

[error] index := index + 1

[error] ~

[error] one error found

[error] (compile:compileIncremental) Compilation failed
[error] Total time: 4 s, completed Jan 18, 2016 6:34:43 PM
make: xxx [DynamicMemorySearch.out] Error 1

val index = Reg(init = UInt(@, width = log2Up(n)))

val memVal = UInt(width = w)

val done = !io.en && ((memVal === io.data) || (index === UInt(n-1)))
/] een

when (io.en) {
index := UInt(Q)

} .elsewhen (done === Bool(false)) {
index := index +

}

Decoupled

The Decoupled interfaceisa
ready/valid interface

The producer drives the bits (data)
and valid lines

The receiver drives the ready line

The producer raisesthevalidline
when dataison the bits line

The receiver raises the ready line
when they are ready to receive data

If ready and valid are both high, a
transaction occurred (sometime
called fire)

— The receiver has toread in bits during
the cycle that both ready and valid or
high

— The produceris allowed to put a new
value on the bits line in the next cycle

— If validis still high in the next cycle, it is
assumed that there is a new value

class DecoupledIO[+T <:
Data] (gen: T) extends
Bundle {

val ready = Bool (INPUT)
val valid = Bool (OUTPUT)

val bits =
gen.cloneType.asOutput

/ /...

Bits

Valid

\ 4

Producer Consumer

~ Ready

How do | find out about Chisel’s
Implementation

Github provides good search capability

Search for “class Bits” or “object Bits” for
example

Access at https://github.com/ucb-bar/chisel/

You also have a copy of the chisel repo for
labl

