Blackboxing With Chisel

Supplemental Slides

Christopher Yarp
CS250 — Spring 2016



When to use blackboxing

* Blackboxing is used when ...

* You have some IP written in Verilog that you would like
to includein your Chisel design

* You cannot express some module because of Chisel’s
semantics (passgates, tristate switches, ...)



How does blackboxing work?

* In Chisel, you define new modules by creating a class that extends
Module

* You can create instances of that module using
val myModule = Module(new ModuleClass)

* We need some way to instantiate a module that has no
descriptionin chisel.

* We do this by creatinga dummy class that extendsBlackBox
and replicates the interface of the Verilog module.

* We can instantiate this dummy class and interact with it like any
chisel module.

 When the Verilog files are generated, instances of blackboxes are
left as simple Verilog instantiations.

* The name of the blackboxed module needs to match that of the
Verilog module so that the Verilog compiler can properlyresolve
the instantiation.



Files when blackboxing

* Verilog file containing module
* Containsthe actual design of the module you are
blackboxing

* Scala file containing the dummy class that extends
BlackBox

* Replicatesthe interface of the Verilog module

* Scala files that represent the rest of your chisel
design

* Use the blackboxed module by instantiatingthe dummy
class like any other Module



Example Verilog Module

module vec sum (
ap clk,
ap_rst,
ap start,
ap done,
ap idle,
ap ready,
vect req din,
vect req full n,
vect req write,
vect rsp empty n,
vect rsp read,
vect address,
vect datain,
vect dataout,
vect size,
len,
ap return );

//Module Functionality Here...

endmodule



Example Chisel Blackbox

import Chisel.
class VecSumBlackbox ()

val io = new Bundle {

val ap clk = Bool (INPUT )

val ap rst = Bool (INPUT )

val ap start = Bool (INPUT )

val ap_ done = Bool (OUTPUT)

val ap idle = Bool (OUTPUT)

val ap ready = Bool (OUTPUT)

val ap return = Bits(OUTPUT, width = 64)
val vect req din = Bool (OUTPUT)
val vect req full n = Bool (INPUT )
val vect reg write = Bool (OUTPUT)
val vect rsp empty n= Bool (INPUT )

val
val
val
val
val
val

vect rsp read
vect address
vect datain
vect:dataout
vect size

extends BlackBox () {

Bits (OUTPUT, width
Bits (INPUT ,width
Bits (OUTPUT,width

(
(
(
(
Bool (OUTPUT)
(
(
(
Bits (OUTPUT, width

scalar io = Bits (INPUT, width = 64)

//Continued to the right

32
64
64
32

~ ~— ~— ~—

//set names of ports (note that the val name
//does not need to match the wire name

io.
io. »
.ap.idle.setName ("ap idle")
io.
io.
.vect req din.setName ("vect req din")

io

io

io.
.vect req write.setName ("vect req write™)
.vect rsp empty n.setName ("vect rsp empty n")
.vect rsp read.setName ("vect rsp read")

.vect address.setName ("vect address")

.vect datain.setName ("vect datain")

.vect dataout.setName ("vect dataout")

.vect size.setName ("vect size")

io
io
io
io
io
io
io

io.

ap.start.setName ("ap start")
ap.done.setName ("ap done")

ap.ready.setName ("ap ready")
ap.rtn.setName ("ap return")

vect req full n.setName ("vect req full n")

scalar io.setName ("len") \

//Add explicit clock
addClock (Driver.implicitClock)

//Rename the clock and reset lines to match

//verilog
renameClock ("clk", "ap clk")
renameReset ("ap rst")

//set module name to match verilog
moduleName = "vec sum”



Compiling your design with
blackboxes

* The Chisel C++ emulator will no longer work because it does not know
the function of the blackboxes

* The tools will not know where to find your Verilog modules the way the
Makefiles are currently set up.

* A good placeto putyourVerilog modulesisin
src/main/verilog/

* You will need to modify the Makefiles to add that directory to add your
Verilog files to the source lists used by VCS and DC

* SRAMs actually use a similarapproach
* Look through the Makefrags for srams_v and srams_dir

* Note that the srams-v Verilog files are passed to VCS in the vcs-sim-rtl Makefrag

* Note that the srams_dirisincluded as a search path for DC and ICC. This can be
found in their corresponding Makefrags

* A goodtacticto includeyourown blackboxesisto mirror what the
SRAMs do

* It may take a coupletries to modify the Makefiles



