Adding SRAMs to Your Accelerator

CS250 Laboratory 3 (Version 022016)
Written by Colin Schmidt
Modified by Christopher Yarp
Adapted from Ben Keller

Overview

In this lab, you will use the CAD tools and jackhammer to explore tradeoffs in the different
implementation of your Sha3 Accelerator from Lab 2. For the first part of this assignment, you
will use registers (flip-flops) to implement the storage for these buffers. Later, you will replace the
flip-flop arrays with SRAM macros to produce a smaller and more energy efficient implementation.

Deliverables

This lab is due Thursday, March 3rd at 11:59PM. The deliverables for this lab are:

e (a) your working Chisel RTL checked into your private git repository at Github
e (b) Reports (only!) generated by DC Compiler, IC Compiler, checked into your git repo for
the three implementations of your design

e (c) written answers to the questions given at the end of this document checked into your git
repository as writeup/lab3-report.pdf or writeup/lab3-report.txt

You are encouraged to discuss your design with others in the class, but you must write your own
code and turn in your own work.

CS250 Lab Assignment 3 (Version 022016), Spring 2016 2

Getting the Lab Template

To get the lab template, run the following commands:

git pull template master
git submodule update --init --recursive

There are some changes to the system environment for this lab. For these changes to take effect,
you will need to completely log off and log back into the hpse or icluster machines.

Compute Resource Changes

In lab 2, you used jackhammer to run jobs serially on one system. While this worked for running
several designs through synthesis, it does not scale well as the complexity and length of the job
increases. To address this, you will be using a compute cluster (icluster) with Torque PBS installed.
This will require some additional setup on your part and is detailed later in this document in the
Using Jackhammer and Torque PBS section. While jackhammer and the icluster are good resources,
they are also limited. Currently, users are limited to 2 simultaneously running jobs on the icluster
and need to share the 3 icluster compute nodes. Also, because of the amount of system the resources
required for icc, few jobs are run simultaneously on each machine. This is because oversubscribing
the machines can result in thrashing which degrades overall performance for all users. As a result,
you may may submit jobs but will need to wait for other jobs to finish before yours running. This
is a common experience with batch systems like the icluster with torque but may be unexpected if
you are used to running commands interactively.

To maximize your productivity, it is recommended that you do most of your development work
on other systems (like the hpse machines) and move to the icluster once you are ready to run
jackhammer. Ideally, you should verify that your SRAM modification (discussed below) works as
expected before spending the time and compute resources to sweep the design space. You can do
this by interactively running the make commands as usual.

The VLSI Flow

In this lab you will be experimenting with SRAMs in your Sha3 design and seeing the results when
pushed through all of the CAD tools. The full toolflow can be seen in figure Figure 3. In addition
to using SRAMs we will be adding two new libraries of standard cells for the tools to use. The new
tool we will be using is ICC. You can find a good reference on how these tool work and what steps
the makefiles go through, below.

1CC

ICC (The IC Compiler) takes a synthesized netlist from DC and performs place-and-route (PAR)
operations. ICC goes through several different stages including forming an initial floorplan, per-
forming initial placement, building clock networks, routing between cells, optimizing the design,
and fixing design rule violations. The scripts in the build/vlsi/icc-par/icc_scripts and
build/vlsi/setup/icc_setup.tcl detail some of the settings and tasks used by icc.

CS250 Lab Assignment 3 (Version 022016), Spring 2016 3

You can run icc using the make target

make run-vlsi-par

Once icc finishes, you can view its reports in build/vlsi/icc-par/current-icc/reports.

You can also view the resulting design using the icc gui:

1. Run the commands:
ssh -X localhost #this is a workaround to a display bug
cd build/vlsi/icc-par/current-icc
icc_shell -64bit -gui

2. Type the following into the tcl console in the gui
source icc_setup.tcl

3. Navigate to File = Open Design

4. Click on Folder Next to Library Name
5. Select Sha3dAccel LIB

6. Select ”Open library as read-only”

7. Select change names_icc

ICC should open the layout window which should look something like Figure 1.

Multi-V; Flow

Thus far in CS250, you have used standard cells from a single library to build your design. Now
you will have an opportunity to take advantage a modern VLSI power-saving techinque: multi-V;
design. The Synopsys educational libraries provide different “flavors” of standard cells. In this lab,
you’ll be using both regular-V;, high-V;, and low-V; standard cells. Recall that transistors with a
higher threshold voltage are slower but leak less. If provided with multiple standard-cell libraries,
the tools will use the faster low-V; devices only on the critical path, and will swap in slower devices
elsewhere to save power.

Take a look at the top-level Makefrag in the build/v1lsi. By linking to each library and providing
a few key commands, Design Compiler can take advantage of the different types of standard cells
to better optimize the design. The cells_x variables determine which libraries the CAD tools are
able to use. The given Makefrag shows how to use all three libraries at once but the evaluation
requests that you limit the tools for one set of runs to see the advantages of a mult-vt setup.

Unfortunately, jackhammer cannot easily modify the Makefiles so you will need to do this modifi-
cation manually. You can move to a single Vt, run jackhammer, and copy the reports to a working
directory. After copying the results, you can restore the multi-Vt cells and run jackhammer again.

CS250 Lab Assignment 3 (Version 022016), Spring 2016 4

IC Compiler - LayoutWindow.1 - Block Inplementation - change names icc.CEL;1 [read onlyl Lib:Sha3Accel LIB [read onlyl - [Layout.1] + - & X
.EI|E Edit View Select Highlight Floorplan Preroute Placement Clock Route Signeff Finishing ECO Verification Power Rail Timing » =8 x

lzrll:zeaanmx ~22E68 Elaaa-saflesalB-B- B2 Ilo-o-uw
“W Input mode Rectangle

Replace =| Clear

Rectangle Intersect
I™ Enable

Query W Map
¥ Annotations

@

@« Smart = Line

Apply | Options: x|
&f100% x| Levello =

Switch to the Quer
hotkey Ctrl+Q) and

information about

; Objects I Layers | SEJL
" | only select highlighted
Object Typ Vis.[sel | cir =]
52 :-Die Area O
i~Core A... O
x +Port
— | | -Terminal O
|~ [5cel
I | |=Pin O -]
firf #Pinsh.. [0 [
i +-Site Rew [[
o +Bound O
1 | &pran 6.
i i Place
~ g--Ruutm I e
Power O
“RPGro... [[ﬂ
[| |sRPKee.. O
£ | |wvoltag... [E
— || #PinGui... [
+ Route O
(=g é--Ruutm N ELI A _’l—l
i e L —
' M PresetlDefauIt j & B Print to Log| Options: |

|CI|ck objects or drag a box to select (Hold Ctrl to add, Shift to remove)

[170 957, 268.180 | E
4

Figure 1: ICC Layout Window

SRAM

This section of the lab describes the general flow for having Chisel include SRAMs in your design.
In this lab you are responsible for converting the absorb buffer from flip-flops to an SRAM macro.

Implementing your buffer as flip-flops introduces considerable overhead in area and energy. With
some simple modifications, you can instantiate an SRAM instead.

Chisel’s Mem class can be used to implement memories with arbitrary numbers of read and write
ports. Writes always happen on the positive clock edge, but the timing of reads can be either
combinational (result available during the same cycle as address is provided) or sequential (address
is registered on positive clock edge, result available during the next cycle). However, the ASIC
SRAMs we will be using in this course all use sequential reads. Therefore, to enable the Chisel
compiler to map a Mem-generated memory to an ASIC SRAM macro (as opposed to an array of
flip-flops), you must specify sequential read timing along with a register at the read address port.
This is not exactly the style shown in the Chisel manual which specifies putting the register at the
output. However, a couple experiments with this lab reveled that placing the register at the read
port results in the proper inference of the SRAM. From your perspective, this should not matter
much as the read latency is still one cycle.

Below is an example of how to instantiate a one read, one write memory (the kind you should use
in your design). You should instantiate the memory for your absorb buffer in a similar fashion. You
may want to make use of the buffer_sram parameter in ctrl.scala to allow jackhammer to produce
designs that either have a register array or SRAM. For more about the Mem class, see Chapter 7 of
the Chisel getting started guide or Chapter 9 of the Chisel manual.

CS250 Lab Assignment 3 (Version 022016), Spring 2016 5

val buffer_mem = Mem(UInt(width = W), round_size_words, seqRead = true)

val buffer_raddr = Reg(UInt(width = log2Up(round_size_words)))

val buffer_wen = Bool(); buffer_wen := Bool(false) //Default value

val buffer_waddr = UInt(width = W); buffer_waddr := UInt(0)

val buffer_wdata = UInt(width = W); buffer_wdata := UInt(0)

val buffer_rdata = Bits(width = W);

if (buffer_sram){
when(buffer_wen) { buffer_mem.write(buffer_waddr, buffer_wdata) }
buffer_rdata := buffer_mem(buffer_raddr)

}

You must instantiate 17-entry SRAM as sized for a width of 64, as we have only given you one
SRAM macro to use in this design. The macro is called sram8t17x64; it is dual-ported, 64 bits
wide, and 17 entries deep. Its library files and Verilog model (used for simulation) are located in
the generated-rams directory. This macro was generated using Cacti, an SRAM modeling suite.
Make sure you the memory you instantiate using Mem has the same depth and width at the SRAM
macro.

As hint, the locations in ctrl.scala that need to be modified are locations with an empty
if (buffer_sram) block. The modification to break absorption into multiple cycles has been done
for you. Also, note that aindex (which is used as the index for absorbing into the state array) is
buffered twice: once in aindex and once at io.aindex. You will need to select the correct version to
feed into buffer_raddr. Also, during the padding operation you will need to read a value indexed
with pindex. This means that you will need to change the index fed into buffer_raddr when
in the m_pad stage. Also, padding unfortunately requires that a value be read from the SRAM,
modified, and written back at the same location. The SRAM has a one cycle read latency so you
will need to compensate for this. You will need to read the value (without writing) in once cycle,
then perform the operations on the data and write it back in the next cycle. This means that
you will need to increment pindex every other cycle instead of every cycle. You will also have to
set buffer_wen to true only after the value was read from the SRAM. Introducing a new boolean
register to keep track of when a read is occurring would probably be a good idea. This register can
be updated in the same block that increments pindex. Finally, you need to keep in mind that, as
a true dual ported SRAM, there are separate read and write address lines.

Checking the SRAM is Instantiated

If you use the Mem class in a way that does not imply a sequential memory, Chisel will just instantiate
an array of flip-flops instead. To check that Chisel inferred the SRAM properly, run make vlsi and
check the generated Verilog files. In /build/vlsi/generated-src/Sha3Accel.DefaultConfig.v
you should see a section that looks like this:

sram8t17x64 sram(
.CE1(CLK) ,
.CSB1("R1E),
.0EB1(1°b0),
.A1(R14),
.01({Rr10[63:01}),

CS250 Lab Assignment 3 (Version 022016), Spring 2016 6

.CE2(CLK) ,

.CSB2("WOE) ,

.WEB2(1°b0),

.A2(WOA) ,

.I2({W0I[63:0]1})
);

If you do not see the SRAM, make sure that case "buffer_sram" => true in the knobValues
block of sha3.scala.
Once you have successfully instantiated an SRAM, build your design with the provided flow.

After running dc, you can verify that the SRAM was used by looking at the Sha3Accel .mapped.reference.rpt
report. You should see a reference to sram8t17x64.

You can also verify that the SRAM was placed in the design by looking at the icc generated layout.
As Figure 2 shows, a rectangular SRAM block is placed in the design instead of registers.

IC Compiler - LayoutWindow.1 - Block Implementation - change names _icc.CEL;1 [read only]l Lib:Sha3Accel LIB/[read onlyl -[La + - O X

File Edit View Select Highlight Fleorplan Preroute Placement Clock Route Signoff Finishing ECO Verification Power Rail » =[] x
IR v0eaOmx| ~22E@ leQ@ - c@leceBE-E-RB][* o =-us

Selection

Replace 'I Clear

Query ¥ Map
¥ Annctations

Input mode ¢ Rectangle
* Smart ¢ Line

Rectangle Intersect
I” Enable

@

=

— — —
m
F‘E‘ Apply | Optluns:ll Switch to the QuEI;;J
S = — hotkey Ctrl+) and «
,E :Q\'IIOO% j LEVE|IU j information abeout it
Objects | Toes | s i|» selection or, use ti
—_— onl lect highlighted >Query Select
I”_Only select highlighte lay informat:
Obiect Typ| Vis. | Sel. | CIr. 4] cted cbiccts.
2] ~Die Area O
Core A O
x Port
—— || +Terminal O
A = el
. =Pin O I:'
wPinsh.. [[
#Site Row [[
-Bound O
+Plan G
- Place... ||
~Routin O
Power O
-RP Gro O O
[||mRPkee .
57 | | voltag O
—|| PinGui..
+ Route O
B v [FRoutin . EI;I 1 ;IJ
5 Seo ==
. PresetlDefau\t j |#] B~ Print to Lﬂgl Options :I
Click objects or drag a box to select (Hold Ctrl to add, Shift te remove) | ‘263 613, 287.755| I I Er

Figure 2: ICC Layout Window - With SRAM

CS250 Lab Assignment 3 (Version 022016), Spring 2016

Verilog Verilog
Source Source Constraints
(Behav) (RTL)
[VCS [VCS] Design Compiler
Behav RTL / \ N
Ny
Sim Sim (Guidance I(_-J:Itgl Delay \‘tm Timing
File Netlist \{ File Area
([Executesim [Execstesm | / /

/\

/\

[~

Std.
Cell
Library

ee O:?:L:ts e Olfps:ts Verificatiop
\ \ o
[DbveEaul (bpvecu | /
IC Compiler (P&R)
T
FS)(;/Snt Delay “] &3; Constraints | Timing Layout \3arasitic
Sim File Netlist File Area File

Execute SIM

!

I

o

[IC Compiler GUI]

VPD

Test
Outputs

\

Execute SIM

!

Post
P&R
Sim

!

Test
Outputs

/

[DVE GUI

] [VPD2VCD

|

VCD

Figure 3: CS250 Toolflow for Lab 2

Power

Fstimates

CS250 Lab Assignment 3 (Version 022016), Spring 2016 8

Using Jackhammer and Torque PBS

Torque is a job manager and scheduler that distributes jobs across multiple machines in a cluster.
Instead of running commands interactivly from a terminal, jobs are submitted into a queue. The
behavior for jobs is often contained within scripts that are provided with the submission The
scheduler will automatically start a job when a machine becomes available. To help distribute
resources on the cluster, users are limited to 2 simultaneously running jobs. Jackhammer has been
modified for this lab so that each configuration is submitted as its own job. In order to use this
new system, there are a couple steps you need to take.

Setup

The icluster machines currently only support x2go and not NX. To setup a connection to iclusterl,
follow these steps:

1. Download the x2go client if you do not already have it
2. Create a new session with iclusterl.eecs.berkeley.edu as the hostname
3. Enter your cs250-## account name as the user account

4. Under session type, select ”XFCE” (xfce is the only desktop manager that is working with
x2go at the moment)

5. Click OK and connect (it may take a couple tries the first time)

The default configuration for xfce does not allow tab-complete. To fix this, follow these steps:

1. Navigate to Application Manu = Settings = Window Manager

2. Select the "Keyboard” tab

3. Select ”Switch window for same application” - it should have 'tab’ as the shortcut.
4. Press the ”Clear” button.

5. Close the window

To allow the automated tools to easily login to other icluster machines, we need to create a ssh key
with no password. However, you already have an ssh key for github which may have a password.
To save your old key and generate a new one, follow these steps:

1. Run these commands to save your github key
mv ~/.ssh/id_rsa ~/.ssh/github_rsa
mv ~/.ssh/id_rsa.pub ~/.ssh/github_rsa.pub

2. Paste the following text into ~/.ssh/config (including the tab on the second line) to continue
using your old key for github
Host github.com
IdentityFile ~/.ssh/github_rsa

CS250 Lab Assignment 3 (Version 022016), Spring 2016 9

3. Run the command:
ssh-keygen -t rsa

4. Select the default file (id_rsa)
5. When prompted for a password, just press enter (no password)

6. Run this command to place the new key into a list of authorized keys for login
cat "/.ssh/id_rsa.pub >> 7/.ssh/authorized_keys

We need to setup the known hosts table with the thumbprints of each machine in the icluster. To
do this, run 1lab3/tools/prepareTorque.sh.

Torque Allocation

iclusterl is serves as the head of the cluster. It runs the job scheduler that distributes jobs to
the other icluster machines. Torque is not currently configured to allow submissions from other
machines, only from iclusterl. Since iclusterl is used as the user’s gateway to the cluster, we
sometimes refer to it as the ”login” node. Since jobs must be submitted using iclusterl, many
people will be logged-in at once. As a result, you should refrain from running workload intensive
tasks on it. Likewise, the other icluster machines are sometimes called ”compute” nodes. While
you can ssh into the other icluster machines, you should not run jobs on them interactively. This
will upset Torque’s resource allocation and will result in a poor experience for you and other users.
Run all jobs on icluster through the Torque system.

Torque Commands

Jackhammer will automaticlaly submit jobs to the torque queue if it is run from iclusterl. By de-
fault, jackhammer will evaluate all possible configurations that match the Config class in sha3.scala.
Feel free to constrain knobs or remove them entirly if you would like to reduce the number of jobs
jackhammer submits.

Running the commands from lab3/jackhammer will automatically submit jobs to torque:

make
make paraent

The torque command jackhammer uses is gsub.

Once the jobs are submitted, you can monitor them using gstat. gstat -a gives an alternative
view and gstat -n will show the node that the job is running on. Using the numeric jobID, you
can use gstat -f jobID to find details about a job. You can use gpeek jobID to peek into stdout
and stderr of a running job. It does not matter that it is running on another system, gpeek will
ssh in for you. Some examples of these commands and their corresponding outputs are below. In
the ’S’ column: ’C’ means ’complete’, 'R’ means 'running’, and 'Q’ means ’queued’.

If you need to stop a job that is queued to run or is already running, you can use the gdel jobID
command.

CS250 Lab Assignment 3 (Version 022016), Spring 2016 10

iclusterl [1470] /scratch/cs250-ta/dryrun/lab-templates-sltn/lab3/jackhammer # gstat

Job ID Name User Time Use S Queue

346.iclusterl ...efaultConfig0 cs250-ta 01:29:48 C batch
347.iclusterl ...efaultConfigl cs250-ta 01:33:00 R batch
348.iclusterl ...efaultConfig2 cs250-ta 00:01:02 R batch
349.iclusterl ...efaultConfig3 cs250-ta 0 Q batch
350.iclusterl ...efaultConfigd cs250-ta 0 Q batch
351.iclusterl ...efaultConfigh cs250-ta 0 Q batch

iclusterl [1472] /scratch/cs250-ta/dryrun/lab-templates-sltn/lab3/jackhammer # gstat -a

iclusterl.EECS.Berkeley.EDU:

Req’d Req’d Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
346.iclusterl.EECS.Ber c¢s250-ta batch hammer-DefaultCo 12293 1 2 - 03:00:00 C -
347 .icluster1.EECS.Ber c¢s250-ta batch hammer-DefaultCo 7994 1 2 - 03:00:00 R 00:53:00
348.iclusterl.EECS.Ber c¢s250-ta batch hammer-DefaultCo 15890 1 2 - 03:00:00 R 00:03:40
349.iclusterl1.EECS.Ber c¢s250-ta batch hammer-DefaultCo - 1 2 - 03:00:00 Q -
350.iclusterl.EECS.Ber c¢s250-ta batch hammer-DefaultCo - 1 2 - 03:00:00 Q -
351.iclusterl.EECS.Ber c¢s250-ta batch hammer-DefaultCo - 1 2 - 03:00:00 Q -

iclusterl [1471] /scratch/cs250-ta/dryrun/lab-templates-sltn/lab3/jackhammer # gstat -n

iclusterl.EECS.Berkeley.EDU:

Req’d Req’d Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
346.iclusterl1.EECS.Ber c¢s250-ta batch hammer-DefaultCo 12293 1 2 - 03:00:00 C -
icluster2+icluster?2
347 .icluster1.EECS.Ber c¢s250-ta batch hammer-DefaultCo 7994 1 2 - 03:00:00 R 00:51:52
icluster3+icluster3
348.iclusterl.EECS.Ber c¢s250-ta batch hammer-DefaultCo 15890 1 2 - 03:00:00 R 00:02:32
icluster2+icluster2
349.iclusterl.EECS.Ber c¢s250-ta batch hammer-DefaultCo - 1 2 - 03:00:00 Q -
350.iclusterl.EECS.Ber c¢s250-ta batch hammer-DefaultCo - 1 2 - 03:00:00 Q -=
351.iclusterl1.EECS.Ber c¢s250-ta batch hammer-DefaultCo - 1 2 - 03:00:00 Q -

iclusterl [1474] /scratch/cs250-ta/dryrun/lab-templates-sltn/lab3/jackhammer # gstat -f 348
Job Id: 348.iclusterl.EECS.Berkeley.EDU
Job_Name = hammer-DefaultConfig2
Job_Owner = cs250-ta@iclusterl.EECS.Berkeley.EDU
resources_used.cput = 00:20:45
resources_used.mem = 2165460kb
resources_used.vmem = 9040256kb
resources_used.walltime = 00:11:21
job_state = R
queue = batch
server = iclusterl.EECS.Berkeley.EDU

Suggested Workflow

Because you are sharing the icluster with other students and are limited to running 2 jobs at a time,
it is probably a good idea to debug and validate your design before moving on to jackhammer. You
should be able to use the hpse machines as before to do your initial work. Once you are satisfied
with your implementation, you should commit it to your git repository and clone it into the scratch
of iclusterl. Once there, you can use jachammer. Jackhammer will automatically run the c++

CS250 Lab Assignment 3 (Version 022016), Spring 2016 11

emulator, pre-synthesis simulation, dc, post synthesis simulation, icc, and post place and route sim-

ulation. You can change which jobs jackhammer runs by modifying jackhammer/Settings.scala.

Removing items from the override val qors = line will cause jackhammer to skip those tasks.

CS250 Lab Assignment 3 (Version 022016), Spring 2016 12

Submission and Writeup

Write a script to collect the data necessary to fill in the following tables. Use the reports generated
by ICC for area, power, and timing information.

You should use Jackhammer to run the experiments to generate the data. The given Jackhammer
configuration will run the design through four qors with all design points, however this may not be
the best configuration to start with and you should feel free to modify Settings.scala to better suit
your needs.

You should create both tables for all 6 points in our design space, and include the bits hashed per
second for the final test with each set of tables.

Area RVT | Multi-VT | Multi-VT + SRAM
Sha3 Dpath | um?
Total um?

Cell Count | LVT
Cell Count | RVT
Cell Count | HVT

Power RVT | Multi-VT | Multi-VT + SRAM
Entire Design
Leakage uW

Total uW
datapath
Leakage uW
Total uW

Questions: Multiple VT Flow

1. What impact does switching from a single VT to a multi-VT flow have on area? Does this
match your expectations?

2. What effect does switching to a multi-V'T have on the power consumption of your design? How
much does it reduce leakage power?

3. Can you think of a reason why you wouldn’t want to use multiple VT cells to implement a
design?

4. What portion of the cells used in the multi-V'T version of your design are regular VI'? Does this
match your expectations?

5. Where in your design do regular VT cells appear? Why do you think this is the case?

CS250 Lab Assignment 3 (Version 022016), Spring 2016 13

Questions: SRAM

1. How much area do you save by using an SRAM instead of registers to implement storage for
your window buffer?

2. What is the area of the SRAM macro?

3. Assuming that the individual bitcells have an area of 0.415 um?, what is the efficiency (area
used for bitcells over total area) of this SRAM macro?

4. What are the other components of an SRAM, besides the bitcells?

Submission

To complete this lab, you should commit the following files to your private Github repository:

Your working Chisel code.

The reports directories from DC, and ICC.

Your script.

e Your answers to the questions above, in a file called writeup.txt or writeup.pdf.
Some general reminders about lab submission:

e Please note in your writeup if you discussed or received help with the lab from others in the
course. This will not affect your grade, but is useful in the interest of full disclosure.

e Please note in your writeup (roughly) how many hours you spent on this lab in total.

Acknowledgements

Parts of this lab, particularly the section on SRAMSs, were originally written by Rimas Avizienis
for CS250 Fall 2012 Lab 2. The AdvTester Chisel class and much of the test infrastructure for this
lab were written by Stephen Twigg.

