
SHA3: Pipelining and interfaces with Exploration

CS250 Laboratory 2 (Version 020416)
Written by Colin Scmidt

Modified by Christopher Yarp
Portions based on previous work by Yunsup Lee

Updated by Brian Zimmer, Rimas Avizienis, Ben Keller

Overview

For this lab you will be building on our previous implementation of Sha3 and tackling a few new
important topics for accelerators. The first change you will make is to add a parameterized number
of pipeline stages to the previous datapath. You will also flesh out the interface the accelerator has
with other components in the system including the Rocket processor driving it and the memory
system. The interface with the Rocket processor, the RoCC interface, will be given to you but you
will be responsible for updating the memory interface. The given memory interface represents a
low performance implementation and can be improved drastically.

In addition, to these updates to the Chisel RTL you will also be using another CAD tool, Design
Compiler to synthesize your RTL into a gate-level netlist. In order to accomplish this synthesis
across the parameterized design you have created we will introduce another Berkeley tool, Jack-
hammer, which will help us manage a design space exploration of our accelerator.

Deliverables

This lab is due Thursday, February 11 at 11:59 PM. The deliverables for this lab are:

• (a) your working Chisel RTL checked into your private git repository at Github

• (c) build results and reports generated by Chisel C++, VCS, and DC checked into your git
repo (results and reports only! No binaries!)

• (d) written answers to the questions given at the end of this document checked into your git
repository as writeup/report.pdf or writeup/report.txt

You are encouraged to discuss your design with others in the class, but you must write your own
code and turn in your own work.

VLSI Synthesis Introduction

Figure 1 illustrates the toolflow you will be using for the first lab. You will use Chisel to generate
both Verilog and C++ versions of your design. The C++ versions will be used by Chisel to create
an emulator of your circuit. Using the tests you write you can verify the functionality of your
RTL without the use of any CAD tools. Once you are satisfied with the quality of you design
you can then also use Chisel to generate a verilog implementation of it. You will use Synopsys
VCS (vcs) to simulate and debug your verilog RTL design. Both tools are capable of producing a
more detailed debugging aid a vpd file. This extra detail comes at a slow down in simulation and
is a less productive but sometimes necessary method. Another CAD tool Discovery Visualization

CS250 Lab Assignment 2 (Version 020416), Spring 2016 2

Environment (dve) can read and display a waveform view of the circuits operation. After you
get your design right, you will use Synopsys Design Compiler (dc shell-xg-t) to synthesize the
design. Synthesis is the process of transforming RTL into a gate-level netlist. Finally, VCS will be
used to simulate the resulting netlist.

The diagram below illustrates how the tools work together.

Getting Started

The setup procedure mirrors that given in the first lab. Use the command

git pull template master

git submodule update --init --recursive

to pull in the latest version of the lab documents and well as all of the new dependencies. There
has been a slight modification to the start-up scripts for this lab. Run

echo "source ~/.bash_profile" > ~/.bashrc

We also need to setup a shared temporary directory on the instructional filesystem. Run the
following commands

ssh cs250-xx@cory.eecs.berkeley.edu

/share/b/bin/mkhometmpdir

ln -s /home/tmp/$USER tmp

Once you have pulled the latest template navigate to the lab2 directory. This directory contains
the following subdirectories: src contains your source code; build contains several nested subdi-
rectories as well. The build/emulator contains the generated files for simulating the Chisel code
with the emulator. The build/vlsi contains a few directories to simulate your generated ver-
ilog(vlsi/generate-src), synthesize this verilog into a gate-level design(vlsi/dc-syn) and then
simulate that gate level design(vlsi/vcs-sim-gl-syn).

Baseline Design Overview

The baseline design for this lab has changed in several ways from the solution to Lab 1. The
most important change revolves around the new interface in the top level module Sha3Accel. This
module now implements the RoCC interface. This means that the module is notified that it has
a new hash to complete via two instructions set over the RoCC interface. The first instruction
specifies the memory addresses for the message to be read from and the hash to be written too.
The design waits until it has received both of these instructions at which point it becomes busy
and begins reading from memory and hashing the message.

The second important change is the use of memory to obtain the message to be hashed. The
baseline design has a simple memory system that sends out one request and waits for its reply
before continuing.

CS250 Lab Assignment 2 (Version 020416), Spring 2016 3

Execute SIM

Verilog
Source
(Behav)

Behav
Sim

VCS

VPD Test
Outputs

DVE GUI

Verilog
Source
(RTL)

VCS Design Compiler

Design Vision GUI

Constraints
File

Constraints
Std.
Cell

Library

RTL
Sim

Gate
Level
Netlist

Timing
Area

Delay
File

Execute SIM

VPD Test
Outputs

DVE GUI

VCS

Post
Syn
Sim

Execute SIM

VPD Test
Outputs

DVE GUI

Figure 1: CS250 Toolflow for Lab 2

CS250 Lab Assignment 2 (Version 020416), Spring 2016 4

Finally, a smaller change is that the accelerator now supports variable length messages and you are
provided with the control to manage this as well as the control to pad the messages appropriately.

SHA3 Datapath: Pipelining

The first part of this lab involves pipelining your design in a parameterized fashion. The idea is to
decrease the critical path in order to increase performance. As we have seen in class this increase
in performance can also be traded for a decrease in energy if we are also able to scale the voltage
down.

The baseline design in this lab includes a new parameter S that corresponds to the number of
pipeline stages to complete one round of the Sha3 permutation. This baseline design also includes
an implementation of this parameter for S=1 which was the design implemented for the previous
lab. The baseline design also has a combined rhopi and so is designed to support S={1,2,4}. If
you are starting from the given design these are the only values your finished implementation need
support. If you are using your previous design with separate rho and pi modules then you should
choose what set of values for S you should support but must support at least three distinct values.

The pipelining you will be implementing is slightly different than traditional pipelining because
we are not adding additional state to keep track of multiple in-flight hashes at once. Rather your
alteration will be more similar to a multi-cycle implementation, in which the larger operation has
been broken up into smaller segments that still end in the same piece of state at the end of each cycle.
The reasons for this are two fold. First, not having multiple in flight hashes significantly reduces
the complexity of implementing this lab. And second, the additional state required to have multiple
hashes in flight is significantly larger than the extra state in a processor for additional instructions
in flight. Both of these reasons don’t eliminate the potential usefullness of such a design and in
fact in a later lab we will implement just such a modification to gauge its effectiveness.

SHA3 Control: Memory Interface and RoCC Interfaces

The second part of the lab is to improve the design of the memory interface. The idea is that,
in order to improve performance for the entire accelerator, all parts must be accelerated and the
simple memory interface given in the baseline can be a bottleneck and can be improved significantly.

Because this baseline design has added the ability to fetch the message from memory, this has
become another portion of the design in need of optimization. The memory system we use can
support multiple in-flight requests and so there is the potential to improve the baseline design by
allowing it to send multiple requests before waiting for their response. This will hopefully increase
the bandwidth obtained from the memory system.

Your task is to update the memory portion of the accelerator to send as many reads from one
message chunk as it can before waiting for any responses. Keep in mind that we are not able to
put back-pressure on the memory system so your accelerator must always be able to handle the
memory responses when they arrive.

Testing

The baseline design includes two tests. One mirrors the test given for Lab 1, which is intended to
help validate that your design is functionally correct for a simple case. The second test is more of

CS250 Lab Assignment 2 (Version 020416), Spring 2016 5

a benchmark in that it is designed to take longer and give you an idea the performance of your
design on a longer hash.

The tests are still implemented in scala and run from scala but some infrastructure has been added
to make it easier to develop tests for a RoCC accelerator that accesses memory. You can see this
extra infrastructure in test infrastructure.scala, and the given tests provide an example of
how to use it. The infrastructure provides a model of memory as well as a simpler method of
modeling the RoCC interface, other than poking all the individual bits. This encapsulation allows
for a similar level of simplicity in our tests as we had in the first lab.

SHA3 Chisel Testing

In addition to the two methods of testing used in the previous lab, C++ and RTL level VCS, a new
option has been added this lab which is post synthesis level simulation. This last test is designed
to be run after your design has been synthesised using Design Compiler (see below).

First, the Chisel compiler can produce C++ code which implements a cycle-accurate simulation of
your design. To generate the C++ code, compile the simulator, and run the testbench, run the
following commands:

% cd $LABROOT

% make emulator

% make run-emulator

In addition to a C++ description of a simulator, the Chisel compiler can also generate Verilog code
that can be used as input to an ASIC flow.

% cd $LABROOT

% make vlsi

% make run-vlsi

The new tester for post synthesis gate level simulation is run from the Makefile with the following
commands:

% cd $LABROOT

% make vlsi

% make run-vlsi-syn

Exploring Design Space and Generating Results

This section contains details on how to test different parameterization of your design, in an auto-
mated fashion, as well as how to collect results from synthesis and simulations automatically.

The tool we will be using to explore the implications have our pipelining and memory interface
changes is a new tool developed here at Berkeley called Jackhammer. Jackhammer uses the concept
of ”knobs” and constraints to automatically generate a set of configurations. Previous versions of
Jackhammer used Chisel Configs but this has recently been replaced with the Context Dependent
Environments (CDE) Package. The usage syntax remains similar to Chisel Configs but several
backend features require alternate implementations. SHA3 and Jackhammer have been modified to

CS250 Lab Assignment 2 (Version 020416), Spring 2016 6

work with CDE but some of the complexity surrounding CDE in the backend had to be included
in the source (especially in sha3.scala). This code is provided for you so you should not need to
worry about it.

The first step to using Jackhammer is to parameterize your design using a Config object. You then
define the set of knobs and the constraints on those knobs. This is already done for you in the
given code, see the top of sha3.scala and topDefinitions at the bottom. You can see that we have
constrained stages to be between 1 and 4, and divisible by 2 or equal to 1. Jackhammer will use a
constraint solver to determine what values it can fill in for the parameters.

Once we have defined our config, we can use Jackhammer to generate a few files to show its
understanding of the parameter space.

% cd $LABROOT/jackhammer

% make

This generates a directory inside of the main scala directory called config. This directory contains
three files, a .cst file listing the constraints that jackhammer has discovered from our definitions.
The .knb file contains the names of the knobs in our design. Finally, the most important file for
us is the .scala file which contains the names of each of the valid configurations. In our case, this
file only contains three points, which is what we expected, each one setting stages to a different
directory.

With this file we can now setup what we want Jackhammer to do for us. If you open up
jackhammer/DefaultSettings.scala you can see a bunch of boilerplate settings. The most im-
portant things to note about this file are the scripts variables, the qors list and the designs list.
Since we have configured Jackhammer to use this settings file it will use these variables to determine
what it does. Explicitly Jackhammer will, for each design configuration in the designs list, execute
the execute script and then the parse script for each of the listed qors.

Jackhammer is capable of distributing jobs across a server cluster, however, the servers we are using
are not currently configured to do this. We will be using Jackhammer to queue up and run jobs seri-
ally on one machine. It will create a folder in the scratch directory /scratch/cs250-aa/hammer-data

which it will use to stage the different run and collect the results to. You should read over the
scripts in the scripts directory to see what they are doing, in future labs you may be asked to
modify them.

Now that you understand what Jackhammer will do it is time to have it start. To run jackhammer
you can execute the following commands:

% cd $LABROOT/jackhammer

% make parent

After running this command Jackhammer will submit the jobs to the servers, which you can monitor
as follows.

% qstat -u cs250-aa

Jackhammer will collect the results from stdout for each of the runs in /home/tmp/cs250-xx/hammer-data/sha3.0.0.0/results

CS250 Lab Assignment 2 (Version 020416), Spring 2016 7

The report files from each run can be found in /scratch/cs250-xx/hammer-data/sha3.0.0.0/DefaultConfig{0-2}/sources/build.
There is one directory for each configuration. The reports are in the same location as in lab 1:
build/emulator/cpp-report build/vlsi/vcs-report

You should copy the results files of your last run into the lab2/writeup directory and commit
them for grading.

Synopsys Design Compiler: RTL to Gate-Level Netlist

You can choose to experiment with Design Compiler before, during, or after you implement the
RTL changes. Either way the steps we take will be the same. The instructions below are designed
to show you the steps the makefile must execute in order to synthesize your design, and are useful
to gain a better understand of how the tools work.

This section will also be updated later with more specific information with regards to Sha3 rather
than GCD.

Design Compiler performs hardware synthesis. A synthesis tool takes an RTL hardware description
and a standard cell library as input and produces a gate-level netlist as an output. The resulting
gate-level netlist is a completely structural description of the design, with only standard cells (and
later on, possibly SRAM macros) as leaves in the design hierarchy. To cut and past commands from
this lab into your Design Compiler shell and make sure Design Compiler ignores the dc shell-topo>

string, we will use an alias to ”undefine” the dc shell-topo> string.

% cd $LABROOT/build/vlsi/dc-syn

% dc_shell-xg-t -64bit -topographical_mode

...

Initializing...

alias "dc_shell-topo>" ""

You will now execute some commands to setup your environment.

dc_shell-topo> set ucb_vlsi_home [getenv UCB_VLSI_HOME]

dc_shell-topo> set stdcells_home \

$ucb_vlsi_home/stdcells/synopsys-32nm/typical_rvt

dc_shell-topo> set_app_var search_path \

"$stdcells_home/db $ucb_vlsi_home/install/vclib ../generated-src"

dc_shell-topo> set_app_var target_library "cells.db"

dc_shell-topo> set_app_var synthetic_library "dw_foundation.sldb"

dc_shell-topo> set_app_var link_library "* $target_library $synthetic_library"

dc_shell-topo> set_app_var alib_library_analysis_path "alib"

dc_shell-topo> set_app_var mw_logic1_net "VDD"

dc_shell-topo> set_app_var mw_logic0_net "VSS"

dc_shell-topo> create_mw_lib -technology $stdcells_home/techfile/techfile.tf \

-mw_reference_library $stdcells_home/mw/cells.mw "Sha3Accel_LIB"

dc_shell-topo> open_mw_lib "Sha3Accel_LIB"

dc_shell-topo> check_library

dc_shell-topo> set_tlu_plus_files \

-max_tluplus $stdcells_home/tluplus/max.tluplus \

CS250 Lab Assignment 2 (Version 020416), Spring 2016 8

-min_tluplus $stdcells_home/tluplus/min.tluplus \

-tech2itf_map $stdcells_home/techfile/tech2itf.map

dc_shell-topo> check_tlu_plus_files

dc_shell-topo> define_design_lib WORK -path "./work"

dc_shell-topo> set_svf "Sha3Accel.svf"

These commands point to your Verilog source directory, create a Synopsys work directory, and
point to the standard libraries you will be using for the class. The set svf command is used to set
up a guidance file which is used by Synopsys Formality. Now you can load your Verilog design in
to Design Compiler with the analyze, elaborate, link, and check design commands.

dc_shell-topo> analyze -format verilog \

"Sha3Accel.v"

dc_shell-topo> elaborate "Sha3Accel"

dc_shell-topo> link

dc_shell-topo> check_design

Before you can synthesize your design, you must specify some constraints; most importantly you
must tell the tool your target clock period. The following command tells the Design Compiler that
the pin named clk is the clock and that your target clock period is 1 nanosecond.

dc_shell-topo> create_clock clk -name ideal_clock1 -period 1

Now you are ready to use the compile ultra command to actually synthesize your design into a
gate-level netlist. -no autoungroup is specified in order to preserve the hierarchy during syntehsis.

dc_shell-topo> compile_ultra -gate_clock -no_autoungroup

...

Beginning Delay Optimization

0:01:42 57293.5 0.00 0.0 0.0

0:01:42 57293.5 0.00 0.0 0.0

0:01:42 57293.5 0.00 0.0 0.0

0:01:42 57293.5 0.00 0.0 0.0

0:01:42 57293.5 0.00 0.0 0.0

0:01:42 57293.5 0.00 0.0 0.0

0:01:42 57293.5 0.00 0.0 0.0

0:01:42 57293.5 0.00 0.0 0.0

...

The compile ultra command will report how the design is being optimized. You should see Design
Compiler performing technology mapping, delay optimization, and area reduction. The fragment
from compile ultra above shows the worst negative slack which indicates how much room there
is between the critical path in your design and your specified clock constraint. Larger negative
slack values are worse since this means that your design is missing the desired clock frequency by a
great amount. Total negative slack is the sum of all negative slack summed over all the endpoints
(register inputs or top level input/output ports) in the design.

Now you can generate the guidance information required by the formal verification tool, and produce
the synthesized gate-level netlist and derived constraints files.

CS250 Lab Assignment 2 (Version 020416), Spring 2016 9

dc_shell-topo> set_svf -off

dc_shell-topo> change_names -rules verilog -hierarchy

dc_shell-topo> write -format ddc -hierarchy -output Sha3Accel.mapped.ddc

dc_shell-topo> write -f verilog -hierarchy -output Sha3Accel.mapped.v

dc_shell-topo> write_sdf Sha3Accel.mapped.sdf

dc_shell-topo> write_sdc -nosplit Sha3Accel.mapped.sdc

dc_shell-topo> write_milkyway -overwrite -output "Sha3Accel_DCT"

dc_shell-topo> source ./dc_scripts/find_regs.tcl

dc_shell-topo> find_regs test/Sha3Accel

Take a look at various reports describing the synthesis results.

dc_shell-topo> report_timing -transition_time -nets -attributes -nosplit

...

Point Fanout Trans Incr Path Attributes

--

clock ideal_clock1 (rise edge) 0.00 0.00

clock network delay (ideal) 0.00 0.00

ctrl/hashed_reg_11_/CLK (DFFX2_RVT) 0.00 0.00 0.00 r

ctrl/hashed_reg_11_/Q (DFFX2_RVT) 0.03 0.10 0.10 f

ctrl/T115[11] (net) 6 0.00 0.10 f

ctrl/U104/Y (INVX2_RVT) 0.02 0.01 * 0.11 r

ctrl/n12 (net) 3 0.00 0.11 r

ctrl/U12/Y (NAND2X0_RVT) 0.02 0.02 * 0.13 f

ctrl/n8 (net) 1 0.00 0.13 f

ctrl/U13/Y (NAND2X0_RVT) 0.02 0.02 * 0.16 r

ctrl/n9 (net) 1 0.00 0.16 r

ctrl/U14/Y (OA22X1_RVT) 0.02 0.04 * 0.20 r

ctrl/n15 (net) 2 0.00 0.20 r

ctrl/U19/Y (AO22X1_RVT) 0.02 0.05 * 0.24 r

ctrl/n20 (net) 1 0.00 0.24 r

ctrl/U70/Y (OA221X1_RVT) 0.02 0.06 * 0.30 r

ctrl/n53 (net) 2 0.00 0.30 r

ctrl/U83/Y (AO221X1_RVT) 0.04 0.07 * 0.37 r

ctrl/n106 (net) 1 0.00 0.37 r

ctrl/U85/Y (OA221X1_RVT) 0.03 0.06 * 0.43 r

ctrl/n107 (net) 1 0.00 0.43 r

ctrl/U79/Y (OR3X1_RVT) 0.02 0.04 * 0.47 r

ctrl/T62 (net) 1 0.00 0.47 r

ctrl/U1253/Y (AND2X1_RVT) 0.02 0.03 * 0.50 r

ctrl/n1324 (net) 2 0.00 0.50 r

ctrl/U535/Y (NAND2X4_RVT) 0.02 0.05 * 0.55 f

ctrl/io_absorb_BAR (net) 13 0.00 0.55 f

ctrl/U3947/Y (AND2X2_RVT) 0.03 0.05 * 0.61 f

ctrl/io_round[4] (net) 6 0.00 0.61 f

ctrl/io_round[4] (CtrlModule) 0.00 0.61 f

ctrl_io_round[4] (net) 0.00 0.61 f

dpath/io_round[4] (DpathModule) 0.00 0.61 f

CS250 Lab Assignment 2 (Version 020416), Spring 2016 10

dpath/iota/io_round[4] (IotaModule) 0.00 0.61 f

dpath/iota/io_round[4] (net) 0.00 0.61 f

dpath/iota/U5/Y (INVX4_RVT) 0.02 0.02 * 0.62 r

dpath/iota/n29 (net) 8 0.00 0.62 r

dpath/iota/U23/Y (AND2X1_RVT) 0.02 0.03 * 0.65 r

dpath/iota/n13 (net) 2 0.00 0.65 r

dpath/iota/U25/Y (AO22X1_RVT) 0.02 0.04 * 0.70 r

dpath/iota/n10 (net) 1 0.00 0.70 r

dpath/iota/U26/Y (AO22X1_RVT) 0.02 0.05 * 0.75 r

dpath/iota/n11 (net) 1 0.00 0.75 r

dpath/iota/U28/Y (NAND3X4_RVT) 0.03 0.07 * 0.82 f

dpath/iota/n12 (net) 1 0.00 0.82 f

dpath/iota/U29/SO (HADDX1_RVT) 0.02 0.07 * 0.88 r

dpath/iota/io_state_o_0[15] (net) 1 0.00 0.88 r

dpath/iota/io_state_o_0[15] (IotaModule) 0.00 0.88 r

dpath/iota_io_state_o_0[15] (net) 0.00 0.88 r

dpath/U2349/Y (AO22X1_RVT) 0.02 0.05 * 0.93 r

dpath/N41 (net) 1 0.00 0.93 r

dpath/state_0_reg_15_/D (DFFX2_RVT) 0.02 0.00 * 0.93 r

data arrival time 0.93

clock ideal_clock1 (rise edge) 1.00 1.00

clock network delay (ideal) 0.00 1.00

dpath/state_0_reg_15_/CLK (DFFX2_RVT) 0.00 1.00 r

library setup time -0.03 0.97

data required time 0.97

--

data required time 0.97

data arrival time -0.93

--

slack (MET) 0.04

...

This report shows the critical path of the design. The critical path has the longest propagation
delay between any two registers in the design and therefore sets an upper bound on the design’s
operating frequency. In this report, we see that the critical path begins at the output of bit 2
of the operand A register in the datapath, goes several subtractors in the datapath, and ends at
output register 15. The critical path takes a total of 0.91ns which is less than the 1ns clock period
constraint. This is reflected by the final line declaring that the positive slack has met timing.

dc_shell-topo> report_area -nosplit -hierarchy

...

Global cell area Local cell area

------------------- ------------------------------

Hierarchical cell Absolute Percent Combi- Noncombi- Black

Total Total national national boxes Design

CS250 Lab Assignment 2 (Version 020416), Spring 2016 11

-------------------------------- ---------- ------- ---------- ---------- ------ -------------------------------

Sha3Accel 59792.2057 100.0 507.7797 0.0000 0.0000 Sha3Accel

ctrl 19785.8732 33.1 9841.7265 9780.4779 0.0000 CtrlModule

...

dpath 39498.5528 66.1 8319.4041 10953.0984 0.0000 DpathModule

...

-------------------------------- ---------- ------- ---------- ---------- ------ --------------------------------

Total 38883.2700 20908.9357 0.0000

...

This report tells you about the post synthesis area results. The units are um2. You can see that
the datapath accounts for 91.8% of the total chip area.

dc_shell-topo> report_power -nosplit -hier

...

--

Switch Int Leak Total

Hierarchy Power Power Power Power %

--

Sha3Accel 2.48e+03 1.09e+04 8.11e+09 2.14e+04 100.0

dpath (DpathModule) 1.36e+03 5.25e+03 5.47e+09 1.21e+04 56.3

iota (IotaModule) 1.246 1.510 1.11e+07 13.851 0.1

ChiModule (ChiModule) 0.000 0.000 1.05e+09 1.05e+03 4.9

RhoPiModule (RhoPiModule) 0.000 0.000 0.000 0.000 0.0

ThetaModule (ThetaModule) 0.000 0.000 1.52e+09 1.52e+03 7.1

ctrl (CtrlModule) 1.13e+03 5.60e+03 2.60e+09 9.33e+03 43.5

...

This report contains post synthesis power estimates. The dynamic power units are uW while the
leakage power units are pW .

dc_shell-topo> report_reference -nosplit -hierarchy

...

**

Design: DpathModule

**

Reference Library Unit Area Count Total Area Attributes

AND2X1_RVT saed32rvt_tt1p05v25c 2.033152 512 1040.973877

AND3X4_RVT saed32rvt_tt1p05v25c 3.049728 1 3.049728

AO22X1_RVT saed32rvt_tt1p05v25c 2.541440 1088 2765.086731

ChiModule 9895.605033 1 9895.605033 h

DFFX1_RVT saed32rvt_tt1p05v25c 6.607744 851 5623.190329 n

DFFX2_RVT saed32rvt_tt1p05v25c 7.116032 749 5329.908061 n

HADDX1_RVT saed32rvt_tt1p05v25c 3.303872 1082 3574.789621 r

HADDX2_RVT saed32rvt_tt1p05v25c 3.812160 6 22.872960 r

INVX2_RVT saed32rvt_tt1p05v25c 1.524864 1 1.524864

IotaModule 112.839937 1 112.839937 h

NAND2X0_RVT saed32rvt_tt1p05v25c 1.524864 3 4.574592

CS250 Lab Assignment 2 (Version 020416), Spring 2016 12

NBUFFX2_RVT saed32rvt_tt1p05v25c 2.033152 306 622.144544

NBUFFX4_RVT saed32rvt_tt1p05v25c 2.541440 50 127.072001

NBUFFX8_RVT saed32rvt_tt1p05v25c 3.812160 35 133.425601

NBUFFX16_RVT saed32rvt_tt1p05v25c 6.099456 3 18.298368

NOR2X0_RVT saed32rvt_tt1p05v25c 2.541440 1 2.541440

NOR4X1_RVT saed32rvt_tt1p05v25c 3.049728 1 3.049728

RhoPiModule 0.000000 1 0.000000 h

SNPS_CLOCK_GATE_HIGH_DpathModule_0 5.845312 1 5.845312 b, h

SNPS_CLOCK_GATE_HIGH_DpathModule_1 5.845312 1 5.845312 b, h

ThetaModule 10205.914785 1 10205.914785 h

Total 21 references 39498.552822

...

This report lists the standard cells used to implement each module. The gcdGCDUnitDpath module
consists of 13 AO22X1 cells, 32 DFFARX1 cells, and so on. The total area consumed by each type of
cell is also reported.

dc_shell-topo> report_resources -nosplit -hierarchy

...

Resource Report for this hierarchy in file ../generated-src/Sha3Accel.v

===

| Cell | Module | Parameters | Contained Operations |

===

| add_x_1 | DW01_inc | width=5 | add_1133 |

| lte_x_2 | DW_cmp | width=64 | lte_1170 |

| ash_3 | DW_leftsh | A_width=4 | sll_1194 |

| | | SH_width=2 | |

| sub_x_4 | DW01_dec | width=2 | sub_1197 |

| lte_x_5 | DW_cmp | width=5 | lte_1200 |

...

| lte_x_49 | DW_cmp | width=5 | lte_1954 |

| add_x_50 | DW01_inc | width=3 | add_2049 |

| add_x_56 | DW01_add | width=64 | add_2080 |

| add_x_59 | DW01_add | width=5 | add_2091 |

| lt_x_338 | DW_cmp | width=64 | lt_1241 lt_1280 |

| lt_x_339 | DW_cmp | width=64 | lt_1294 lt_1341 lt_2098 |

| lt_x_340 | DW_cmp | width=5 | lt_1257 lt_2097 |

| lte_x_341 | DW_cmp | width=5 | lte_1282 lte_1288 |

| lte_x_342 | DW_cmp | width=5 | lte_1267 lte_1306 lte_1307 |

| add_x_7 | DW01_add | width=32 | add_1248 add_1251 add_1302 |

| add_x_8 | DW01_inc | width=5 | add_1263 add_1264 add_1355 |

| DP_OP_467J2_124_1151 | | |

| | DP_OP_467J2_124_1151 | | |

===

...

CS250 Lab Assignment 2 (Version 020416), Spring 2016 13

Implementation Report

===

| | | Current | Set |

| Cell | Module | Implementation | Implementation |

===

| add_x_1 | DW01_inc | apparch (area) | |

| lte_x_2 | DW_cmp | apparch (area) | |

| ash_3 | DW_leftsh | astr (area) | |

| sub_x_4 | DW01_dec | apparch (area) | |

| lte_x_5 | DW_cmp | apparch (area) | |

| add_x_6 | DW01_add | pparch (area,speed) |

| add_x_9 | DW01_inc | apparch (area) | |

| lt_x_10 | DW_cmp | apparch (area) | |

| lt_x_11 | DW_cmp | pparch (speed) | |

...

| lt_x_340 | DW_cmp | apparch (area) | |

| lte_x_341 | DW_cmp | apparch (area) | |

| lte_x_342 | DW_cmp | apparch (area) | |

| add_x_7 | DW01_add | pparch (speed) | |

| add_x_8 | DW01_inc | apparch (area) | |

| DP_OP_467J2_124_1151 | | |

| | DP_OP_467J2_124_1151 | str (area) | |

===

...

Synopsys provides a library of commonly used arithmetic components as highly optimized building
blocks. This library is called Design Ware and Design Compiler will automatically use Design
Ware components when it can. This report can help you determine when Design Compiler is using
Design Ware components. The DW01 sub in the module name indicates that this is a Design Ware
subtractor. This report also gives you what type of architecture it used.

You can use makefiles and scripts to help automate the process of synthesizing your design. Type
exit to leave the DC shell. Then type:

% cd $LABROOT/build/dc-syn

% make

Go ahead and take a look what the automated build system produced.

% cd $LABROOT/build/dc-syn

% ls -l

total 20

drwx------ 3 cs250 cs250 4096 Sep 12 06:13 alib

drwxr-xr-x 7 cs250 cs250 4096 Sep 16 14:18 build-dc-01.250ns-2014-09-16_14-13

lrwxrwxrwx 1 cs250 cs250 34 Sep 16 14:13 current-dc -> build-dc-01.250ns-2014-09-16_14-13

drwx------ 2 cs250 cs250 4096 Sep 12 06:13 dc_scripts

-rw------- 1 cs250 cs250 1062 Sep 12 06:13 Makefile

-rw------- 1 cs250 cs250 3963 Sep 12 06:13 Makefrag

CS250 Lab Assignment 2 (Version 020416), Spring 2016 14

lrwxrwxrwx 1 cs250 cs250 8 Sep 12 06:13 setup -> ../setup

% cd current-dc

% ls -l

total 856

-rw-r--r-- 1 cs250 cs250 37 Sep 16 14:18 access.tab

-rw-r--r-- 1 cs250 cs250 370697 Sep 16 14:18 command.log

-rw------- 1 cs250 cs250 5139 Sep 16 14:13 common_setup.tcl

-rw------- 1 cs250 cs250 3632 Sep 16 14:13 constraints.tcl

-rw-r--r-- 1 cs250 cs250 29 Sep 16 14:18 dc

-rw------- 1 cs250 cs250 4625 Sep 16 14:13 dc_setup_filenames.tcl

-rw------- 1 cs250 cs250 4914 Sep 16 14:13 dc_setup.tcl

-rw------- 1 cs250 cs250 4612 Sep 16 14:13 dc.tcl

-rw------- 1 cs250 cs250 2720 Sep 16 14:13 find_regs.tcl

-rw-r--r-- 1 cs250 cs250 420655 Sep 16 14:18 force_regs.ucli

drwxr-xr-x 2 cs250 cs250 4096 Sep 16 14:13 log

-rw------- 1 cs250 cs250 3686 Sep 16 14:13 Makefrag

-rw-r--r-- 1 cs250 cs250 1387 Sep 16 14:13 make_generated_vars.tcl

drwxr-xr-x 2 cs250 cs250 4096 Sep 16 14:18 reports

drwxr-xr-x 2 cs250 cs250 4096 Sep 16 14:18 results

drwxr-xr-x 2 cs250 cs250 4096 Sep 16 14:13 Sha3Accel_LIB

-rw-r--r-- 1 cs250 cs250 29 Sep 16 14:13 timestamp

drwxr-xr-x 2 cs250 cs250 4096 Sep 16 14:13 WORK

Notice that the Makefile does not overwrite build directories. It creates a new build directory
every time you run make. This makes it easy to change your synthesis scripts or source Verilog,
resynthesize your design, and compare your results to those from an earlier design. You can use
symlinks to keep track of various build directories. Inside the current-dc directory, you can see
all the tcl scripts as well as the directories named results and reports. results contains your
synthesized gate-level netlist, and reports contains various post synthesis reports.

Synopsys provides a GUI front-end for Design Compiler called Design Vision which you will use
to analyze the synthesis results. You should avoid using the GUI to actually perform synthesis
since scripting the process is more efficient. Start Design Vision, and open the .ddc file to load
your synthesized design. (.ddc is a proprietary binary format used by Synopsys to encapsulate all
post-synthesis data.)

% cd $LABROOT/build/dc-syn/current-dc

% design_vision-xg -64bit

...

Initializing...

design_vision> alias "design_vision>" ""

design_vision> source dc_setup.tcl

design_vision> read_file -format ddc "results/Sha3Accel.mapped.ddc"

You can browse your design with the hierarchical view (see Figure 2). If you right click on a module
and select the Schematic View option, the tool will display a schematic view of the standard cells
used to implement that module.

CS250 Lab Assignment 2 (Version 020416), Spring 2016 15

Figure 2: Design Vision Hierarchical View

Questions

Your writeup should not exceed one page in length. Make your writing as crisp as you can! These
questions are intended to be thought provoking rather than work intensive.

Q1. Chisel and Jackhammer

• Do you feel the combination of Chisel and Jackhammer helped you for this lab?

• Are there features you would like to see in Chisel and/or Jackhammer that could improve
your experience?

• Other than the obvious bugs noted on piazza are there any issues you encountered.

Q2. Pipelined exploration

• Which of the design you synthesized has the best performance in terms of Gigabits hashed
per second?

• Which of the design you synthesized has the best performance/energy in terms of Gigabits
hashed per second per joule?

• What do you believe to be the bottlenecks for each of your design points?

• What would you recommend to alleviate these bottlenecks?

Read me before you commit!

This section will be updated later with submission instructions

• Commiting is not enough for us to grade this lab. You will also need to push your changes
to github with the following command: git push origin master

CS250 Lab Assignment 2 (Version 020416), Spring 2016 16

• Please note in your writeup if you discussed or received help with the lab from others in the
course. This will not affect your grade, but is useful in the interest of full disclosure.

• Please note in your writeup (roughly) how many hours you spent on this lab in total.

• To summarize, your Git tree for lab2 should look like the following (use the Github web
browser to check that everything is there):

/cs250-ab

/lab2

/src: COMMIT CHISEL CODE

/jackhammer: original files only

/chisel: original files only

/build:

/vlsi: original files only

/generated-src: original files only

/emulator: original files only

/generated-src: original files only

/writeup: COMMIT REPORT

/results: COMMIT Jackhammer results for S={1,2,4} and fast and slow memory unit

Acknowledgements

Many people have contributed to versions of this lab over the years. The lab was originally de-
veloped for CS250 VLSI Systems Design course at University of California at Berkeley by Yunsup
Lee. Original contributors include: Krste Asanović, Christopher Batten, John Lazzaro, and John
Wawrzynek. Versions of this lab have been used in the following courses:

• CS250 VLSI Systems Design (2009-2013) - University of California at Berkeley

• CSE291 Manycore System Design (2009) - University of California at San Diego

