
SHA3: Introduction to VLSI with Chisel

CS250 Laboratory 1 (Version 012216)
Written by Colin Scmidt

Modified by Christopher Yarp
Portions based on previous work by Yunsup Lee

Updated by Brian Zimmer, Rimas Avizienis, Ben Keller

Overview

The goal of this assignment is to get you familiar with design using Chisel and some of the VLSI
CAD tools, both of which will be used throughout the course. This lab should also introduce you
to SHA3 a cryptographic algorithm you will be implementing and optimizing over the semester.
Specifically, during this lab you will implement a basic version of SHA3, test it using both a Chisel
RTL emulator and Verilog simulator, and finally gain an understanding for the algorithm trade offs
in SHA3.

Deliverables

This lab is due Thursday, January 28 at 12:30PM. The deliverables for this lab are:

• (a) your working Chisel RTL checked into your private git repository at Github

• (b) a set of tests for both individual modules and the complete design (also checked into your
repository)

• (c) build results and reports generated by Chisel C++ and VCS checked into your git repo
(results and reports only! No binaries!)

• (d) written answers to the questions given at the end of this document checked into your git
repository as writeup/report.pdf or writeup/report.txt

You are encouraged to discuss your design with others in the class, but you must write your own
code and turn in your own work.

VLSI Toolflow Introduction

Figure 1 illustrates the toolflow you will be using for the first lab. You will use Chisel to generate
both Verilog and C++ versions of your design. The C++ versions will be used by Chisel to create
an emulator of your circuit. Using the tests you write you can verify the functionality of your
RTL without the use of any CAD tools. Once you are satisfied with the quality of you design you
can then also use Chisel to generate a verilog implmentation of it. You will use Synopsys VCS
(vcs) to simulate and debug your verilog RTL design. Both tools are capable of producing a more
detailed debugging aid, a vpd file. This extra detail comes at a slow down in simulation and is
a less productive but sometimes necessary method. Another CAD tool Discovery Visualization
Environment (dve) can read and display a waveform view of the circuits operation, typically from
a vpd or vcd file.

The diagram below illustrates how the tools work together.

CS250 Lab Assignment 1 (Version 012216), Spring 2016 2

Generated
Verilog
(RTL)

VCS

RTL
Sim

Execute SIM

VPD Test
Outputs

DVE GUI

Chisel

Chisel
Source

Generated
C++

Emulator

G++

RTL
Emulator

Execute SIM

VPD Test
Outputs

DVE GUI

Figure 1: CS250 Toolflow for Lab 1

CS250 Lab Assignment 1 (Version 012216), Spring 2016 3

Getting Started

You can follow along through with this lab by typing in the commands marked with a ’%’ symbol
at the shell prompt. To cut and paste commands from this lab into your bash shell (and make sure
bash ignores the ’%’ character) just use an alias to ”undefine” the ’%’ character like this:

% alias %=""

Note: OS X Preview may not copy newlines correctly. If you have problems, try using Adobe
Reader.

All of the CS250 laboratory assignments should be completed on one of the EECS instructional
machines allocated for the class. Please follow the setup instructions on the course website before
attempting this lab. In particular, you will need to source a setup script before you can run the CAD
tools. This script specifies the location of each tool and sets up necessary environment variables.

You will be using Git to manage your CS250 laboratory assignments. Please see the Git tutorial
posted on the course website for more information about how to use Git. Each student will have
a private git repository hosted on github.com. If you don’t already have a Github account, you
will need to create one. Once you have an account, you must post your Github account name
and CS250 class account username on Piazza. Once you do this, your TA will create a private
repository for you and you will be able to access the lab materials.

The lab materials we provide will be hosted in a template repository. You will clone this template
repository to a directory on the machine you’re working on. Afterwards, you will set your remote
repository to point at your private repository. This will create a local repository that is linked
to two different remote repositories (one which is managed by the staff and is read only, while the
other is your private repository). If any updates are made to the template repository, you should
be able to easily merge the changes into your local repository.

As the CAD tools generate a lot of data and your class account home directories have only a small
disk quota (not to mention access speed issues with network mounted filesystems), we will need to
use the local disk of the machine to store the outputs of the CAD tools. By default, the permissions
on a directory that you create in /scratch will be set to that its contents are only readable by your
class account. You will use git to backup your design files to a server hosted by github. Assuming
your username is cs250-ab (change this to your own class account username), you can create a local
working git directory on one of the EECS instructional machines using the following commands:

% cd /scratch

% mkdir cs250-ab

% cd cs250-ab

% git init

% git remote add template git@github.com:ucberkeley-cs250/cs250-ta.git

% git remote add origin git@github.com:ucberkeley-cs250/cs250-ab.git

You will need to setup ssh keys and export them to github in order to access the repositories. To do
this, follow the instructions at https://help.github.com/articles/generating-an-ssh-key/.

To do this the lab you will make use of some infrastructure that we have provided. The infrastruc-
ture includes Makefiles and scripts needed to complete the lab. The following commands fetch these

https://help.github.com/articles/generating-an-ssh-key/

CS250 Lab Assignment 1 (Version 012216), Spring 2016 4

files from the template repository, and then copy them into your private repository. To simplify the
rest of the lab we will also define a ’$LABROOT’ environment variable which contains the absolute
path to the project’s top-level root directory.

% cd /scratch/cs250-ab

% git pull template master

remote: Counting objects: 191, done.

remote: Compressing objects: 100% (136/136), done.

remote: Total 191 (delta 41), reused 188 (delta 41)

Receiving objects: 100% (191/191), 185.87 KiB | 293 KiB/s, done.

Resolving deltas: 100% (41/41), done.

From https://github.com/ucberkeley-cs250/lab-templates

* branch master -> FETCH_HEAD

% git pull origin master #if remote ref master cannot be found, don’t worry

#proceed to next command

...

% git push origin master

...

% git submodule init

% git submodule update

% cd lab1

% LABROOT=$PWD

The git submodule commands are used to clone external git repositories that the project depends
on. In this lab, it clones the official chisel git repository.

The two remote repositories are named template and origin. origin points to your private repository
and template points to the read-only staff account. If the provided lab files are ever updated, a
simple git pull template master should merge in these changes with your own local versions of
the files.

Please commit and run git push origin master frequently. /scratch is only intended as tem-
porary storage and is not backed up. /scratch lives on a local drive, so if you ever decide to
work on a different machine, you can push/pull your design files to/from Github to move your
design files from one machine’s local drive to the other’s. Follow the instructions below to move
files between machines (assuming all the files of interest have already been committed to your local
repository). This procedure will not move your build directories (you will need to rerun synthesis
or place-and-route to regenerate the files on the new machine), so only switch machines if there is
a good reason to do so.

(on machine A)

% git push origin master

(on machine B)

% git pull origin master

The resulting $LABROOT directory contains the following subdirectories: src contains your source
Chisel; build contains the generated files for simulating both the C++ code with the emulator
and the verilog code with vcs. The src directory contains the Scala modules and tests you will
be using in this lab assignment. Figure 2 shows each directory that you have been provided and
includes comments about what they do.

CS250 Lab Assignment 1 (Version 012216), Spring 2016 5

Makefile
.gitignore
src/main/
 scala/
 c/
build/
 vlsi/
 generated-src/
 emulator/
 generated-src/
csrc/
project/
target/

"make vlsi/emulator" takes .scala from src/ and generates verilog/c++ sims

Tells Git to ignore generated-src/, and otherdynamically generated files
 Main directory for code

Chisel target: C emulator

Chisel target: VLSI
Verilog code generated by Chisel (*.v)

Generated code for simulation both C and Verilog

C code generated by Chisel

Notation:
blue means that these files generated dynamically, and are not stored in the repository

lab1/

 *.scala Chisel code your implementation lives here
 *.c Reference implementation in C

vcs generated files for verilog simulation

sbt generated files
sbt generated files

Figure 2: Directory organization for lab1/

CS250 Lab Assignment 1 (Version 012216), Spring 2016 6

Introduction to SHA3

Secure hashing algorithms represent a class of hashing functions that provide four attributes: ease
of hash computation, inability to generate the message from the hash (one-way property), inability
to change the message and not the hash (weakly collision free property), and inability to find
two messages with the same hash (strongly collision free property). The National Institute of
Standards and Technology (NIST) recently held a competition for a new algorithm to be added to
its set of Secure Hashing Algorithms (SHA). In 2012 the winner was determined to be the Keccak
hashing function and a rough specification for SHA3 was established. The algorithm operates on
variable length messages with a sponge function, and thus alternates between absorbing chunks of
the message into a set of state bits and permuting the state. The absorbing is a simple bitwise
XOR while the permutation is a more complex function composed of several operations, χ, θ, ρ,
π, ι, that all perform various bitwise operations, including rotations, parity calculations, XORs,
etc. The Keccak hashing function is parameterized for different sizes of state and message chunks
but for this lab we will only support the Keccak-256 variant with 1600 bits of state and 1088 bit
message chunks. In addition, for this lab we will ignore the variable length portion to avoid one
of the most complicated parts of Keccak the padding. Our interface, which is discussed further
below, assume a single chunk of message is ready to be absorbed and hashed. You can see a block
diagram of what your resulting design should look like in Figure 3.

The SHA3 standard is documented in FIPS PUB 202. The draft specification of SHA3 that
was available at the time this lab was originally written can be found at http://csrc.nist.gov/
publications/drafts/fips-202/fips_202_draft.pdf with the final version at http://dx.doi.
org/10.6028/NIST.FIPS.202. You are encouraged to take a quick glance at specification as it is
a good example of a standards document. If you are new to reading standards documents, you
will probably notice that the descriptions in the document are quite dense and may require some
time to understand. This is true of many standards documents with FIPS PUB 202 being a rather
short example (the original IEEE 802.11 standard has over 2,700 pages with each addendum such
as b, g, n, and ac adding more pages). Hardware designers are often responsible for implementing
different standards so learning how to read standards documents is a valuable skill (although, not
one we will practice in this lab).

Fortunately, you will not need to look at the FIPS PUB 202 too closely for this lab as a C reference
implementation is provided for you. The C implementation constitutes the software golden reference
for the lab. The first step in most projects is to create a software golden reference that produces the
behavior that is expected from the hardware design. The results produced by the hardware design
are compared against the results from the golden reference design to determine if the hardware
design is functioning as expected. In addition to providing the model by which the hardware
design is checked, the golden reference can also serve as a basis for the initial hardware design.

You will implement the SHA3 design based on the C reference implementation. You are not
encouraged to check the consistency of the C implementation with the standards document as this
will take a long time and is not the focus of this lab. Your implementation will be compared
against the C implementation and not the description in FIPS PUB 202. Do not attempt to add
any additional features of SHA3 that are not included in the C implementation.

http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.6028/NIST.FIPS.202

CS250 Lab Assignment 1 (Version 012216), Spring 2016 7

You can run the C reference version on the simplest input with the following commands:

% cd $LABROOT/src/main/c

% make

% make run

This will by default print out the different values of the state after each permutation and round.
Your chisel implementation should match each of these steps exactly. Tracing through any differ-
ences is a good way to debug the whole design, but early simpler tests should help you avoid this
tedious exercise.

! " # $ %state_in state_out

 sha3Pipeline

State

HashIdle Read Pad Write

sha3Accel

message

hash

Figure 3: Block diagram for SHA3

CS250 Lab Assignment 1 (Version 012216), Spring 2016 8

SHA3 Datapath: Implementation and Testing Strategies

Rather than jumping in and implementing the entire SHA3 design above it would be better to start
with something smaller but still testable. This should reduce complexity and debugging time. The
most logical way to begin the design would be to create a single cycle version that simply performs
the permutation. Even this design has multiple components that are individually testable. A good
implementation strategy would be to design each of the function blocks, χ, θ, etc. indvidually and
write unit-tests for the blocks. The chisel source directory has already a skeleton of the code you
will need to write, outlining how you should organize your implementation.

The given directory includes one of the modules implemented with a test. You are responsible for
implementing the remaining modules and associated tests.

You can run the given test with the run-unit or run-unit-vlsi make targets. These targets
allows you to choose any of the main classes to be run, so they will continue to work as you add
more tests for new modules. run-unit uses the C++ emulator while run-unit-vlsi uses Verilog
with VCS. These two testing tools are discussed in more detail below.

Testing a design in this manner should make integration easier and more bug free. Once you have
connected the datapath together another logical point to test the design arrises and you should
have something like Figure 4. In addition to the unit-tests from before you should now write a
larger test to ensure the permutation is happening correctly.

! " # $ %state_in state_out

 sha3Datapath

piUnitTest

sha3DatapathTest

Figure 4: Block diagram for SHA3

SHA3 Control: State Machines and Interfaces

With a complete and tested datapath the next step in implementing SHA3 is to write something to
control the datapath. For this lab some of the more complex needs of the SHA3 accelerator have
been abstracted away or given to you. You will be given a section of the message that has already

CS250 Lab Assignment 1 (Version 012216), Spring 2016 9

been read from memory and been padded appropriately. This limits the lengths of messages your
design can hash to those smaller than 1088 bits, but makes the design significantly simpler. Don’t
worry in future labs you will remove this limitation and get to deal with all the complexities that
entails.

With this interface you will need to implement a control state machine that can read the message
data into the datapaths state element, perform the correct number of permutations, and finally
return the resulting hash. The control state machine should also adhere to the ready valid protocol
for these signals. The state machine should keep track of whether the accelerator is busy and how
many rounds of permutation have been done. In addition, since we are only hashing a single chunk
at a time the state machine is also responsible for starting each hash with the correctly absorbed
state.

The main chisel file for the whole accelerator includes a test that should test most of the function-
ality. This test is replicated in a step by step fashion online at:

https://github.com/gvanas/KeccakCodePackage/blob/master/TestVectors/KeccakF-1600-

IntermediateValues.txt

SHA3 Chisel Testing

When you are ready to test your code, there are two methods from which to choose. First, the Chisel
compiler can produce C++ code which implements a cycle-accurate simulation of your design. To
generate the C++ code, compile the simulator, and run the testbench, run the following commands:

% cd $LABROOT

% make emulator

% make run-emulator

In addition to a C++ description of a simulator, the Chisel compiler can also generate Verilog code
that can be used as input to an ASIC flow.

% cd $LABROOT

% make vlsi

% make run-vlsi

Once you are happy that your design passes the given test you should add at least one additional
test for the design. It could be a test that checks for a different hash, or a test that tests for a
specific control sequence that seems difficult to get right or any other case you think might not be
handled correctly.

Finally, in addition to committing your tests and source I would also like you to run two more make
commands to save the output of these runs for submission.

% cd $LABROOT

% make run-emulator-report

% make run-vlsi-report

This will create to files in your build/emulator and build/vlsi that will record the results of
your simulations.

https://github.com/gvanas/KeccakCodePackage/blob/master/TestVectors/KeccakF-1600-IntermediateValues.txt
https://github.com/gvanas/KeccakCodePackage/blob/master/TestVectors/KeccakF-1600-IntermediateValues.txt

CS250 Lab Assignment 1 (Version 012216), Spring 2016 10

Debugging with Chisel

To debug your Chisel design, you can use either the C++ simulator, or simulate the generated
Verilog files using VCS.

There are several ways to debug using the C++ simulator. The Chisel C++ simulator has a specific
debug API for the tester consisting of peeks, pokes, and expects, that you have experimented with
in the first chisel getting started assignment. In this way during your test you can request the value
of any signal you can name with peek.

Synopsys VCS: Simulating your Verilog

In this lab we will not be using VCS directly but rather using it through chisel, so the exact options
are less important right now but for your reference info on the options and how a more complete
setup, which might be used in later labs is included below.

VCS compiles Verilog source files into a native binary that implements a simulation of the Verilog
design. VCS can simulate both behavioral and RTL level Verilog modules. In behavioral models, a
module’s functionality can be described more easily by using higher levels of abstraction. In RTL
descriptions, a module’s functionality is described at a level that can be mapped to a collection of
registers and gates. Verilog behavioral models may not be synthesizable, but they can be useful
in constructing testbenches and when simulating external devices that your design interfaces with.
The test harness we have provided for this lab is a good example of how behavioral Verilog can be
used. You will start by simulating the GCD module implemented in a behavioral style.

% cd $LABROOT/build-unscripted/vcs-sim-behav

% vcs -full64 -PP +lint=all +v2k -timescale=1ns/10ps \

../../src/gcdGCDUnit_behav.v \

../../src/gcdTestHarness_behav.v

By default, VCS produces a simulator binary called simv. The -PP command line option turns
on support for using the VPD trace output format. The +lint=all argument turns on all Verilog
warnings. Since it is quite easy to write legal Verilog code that doesn’t behave as intended, you
should always enable all warnings to help you catch mistakes. For example, VCS will warn you if
you try to connect two nets with different bitwidths or don’t wire up a port on a module. Always try
to eliminate all VCS compilation errors and warnings. The +v2k command line option tells VCS to
enable Verilog-2001 language features. Verilog allows a designer to specify how the abstract delay
units in their design map into real time units using the ‘timescale compiler directive. To make
it easy to change this parameter you will specify it on the command line instead of in the Verilog
source. After these arguments you list the Verilog source files. The -v flag is used to indicate which
Verilog files are part of a library (and thus should only be compiled if needed) and which files are
part of the actual design (and thus should always be compiled). After running this command, you
should see text output indicating that VCS is parsing the Verilog files and compiling the modules.
Notice that VCS actually generates C++ code which is then compiled using gcc. When VCS is
finished there should be a simv executable in the build directory.

CS250 Lab Assignment 1 (Version 012216), Spring 2016 11

Debugging with DVE

Where should you start if a design doesn’t pass all your tests? The answer is to debug your RTL
code using the Discovery Visualization Environment (DVE) GUI to generate a waveform view of
signals in your design. The simulator already has already written a trace of the activity of every
net in your design to the Sha3Accel.vpd file. DVE can read the Sha3Accel.vpd file and visualize
the wave form. Notice that the design will contain many signals with the T prefix, which hold
intermediate values produced by the Chisel compiler.

% cd $LABROOT

% make run-vlsi-vpd

% dve -full64 -vpd build/vlsi/generated-src/Sha3Accel.vpd &

You can also use DVE to debug failing unit tests.

% cd $LABROOT

% make run-unit-vlsi-vpd

% dve -full64 -vpd build/vlsi/generated-src/<UnitName>.vpd &

To add signals to the waveform window (see Figure 5) you can select them in the hierarchy window
and then right click to choose Add To Waves > New Wave View.

Figure 5: DVE Waveform Window

CS250 Lab Assignment 1 (Version 012216), Spring 2016 12

Questions

Your writeup should not exceed one page in length. Make your writing as crisp as you can!

Q1. W=32 vs. W=64

Throughout the lab, we were focused on implementing Keccak-1600 which uses a word size of 64 bits
and a state size of 1600 bits. The algorithm is also defined for Keccak-800 which scales everything
down to a word size of 32 bits. In this question we would like you to think about how to create a
single chisel design that could be compiled to run either of these algorithms.

• What changes would you need to make to the datapath and the control unit?

• Does the current test harness work for both versions of the algorithm? If not, what could you
do to make the tester more parameterized.

• How does this change effect the area/power/performance properties of the chip? This question
is more qualitative now but as we progress through the labs and begin to use more of the
CAD tools we will be able to make a more concrete claim about this properties.

Q2. Standards Documents

Technical standards play a very important role in engineering and computer science. Standards
allow multiple vendors to implement compatible products by working off of the same specification.

Answer the following questions at a high level by looking at the sections of FIPS PUB 202 that
detail the keccak algorithm (sections 3.2 - 3.4) as well as the keccakf function in the C reference.
Don’t worry too much about the technical details, focus on high level observations.

• Why might one produce a standards document like FIPS PUB 202 instead of simply releasing
a C reference?

• What are some benefits of producing a software golden reference before beginning the hard-
ware design?

Q3. Chisel vs. Verilog

If you have used Verilog before to design circuits please tell us how you felt creating a design like
this in Chisel. Was it easier, harder, did any of Chisel or Scala’s features make things simpler?

Read me before you commit!

• Commiting is not enough for us to grade this lab. You will also need to push your changes
to github with the following command: git push origin master

• If you are using one or more late days for this lab, please make a note of it in your writeup.
If you do not, your TA will assume that whatever was committed at the deadline represents
your submission for the lab, and any later commits will be disregarded.

• Please note in your writeup if you discussed or received help with the lab from others in the
course. This will not affect your grade, but is useful in the interest of full disclosure.

• Please note in your writeup (roughly) how many hours you spent on this lab in total.

CS250 Lab Assignment 1 (Version 012216), Spring 2016 13

• To summarize, your Git tree for lab1 should look like the following (use the Github web
browser to check that everything is there):

/cs250-ab

/lab1

/src: COMMIT CHISEL CODE

/build:

/vlsi: COMMIT vlsi-report

/generated-src: original files only

/emulator: COMMIT cpp-report

/generated-src: original files only

/writeup: COMMIT REPORT

Acknowledgements

Many people have contributed to versions of this lab over the years. The lab was originally de-
veloped for CS250 VLSI Systems Design course at University of California at Berkeley by Yunsup
Lee. Original contributors include: Krste Asanović, Christopher Batten, John Lazzaro, and John
Wawrzynek. Versions of this lab have been used in the following courses:

• CS250 VLSI Systems Design (2009-2013) - University of California at Berkeley

• CSE291 Manycore System Design (2009) - University of California at San Diego

