
C/CS/Phys 191 Solovay-Kitaev, Complexity, Reversible Computing 9/27/05
Fall 2005 Lecture 9

1 Readings
Benenti, Casati, and Strini:

Reversible computation Ch.1.5 - 1.6

Turing Machines Ch. 1.1

Complexity Theory Ch. 1.3 - 1.4

2 Approximating Unitary Operators
Last time we defined a universal set of quantum gates. Now we consider the question of just how many
gates are needed to effect an arbitrary quantum operation, or circuit?

An n-qubit gateU (a 2n×2n unitary matrix) has exponentially many parameters. So typically in general we
need exp(n) many gates to even approximateU .

The Solovay-Kitaev theorem says that, as a function ofε, the complexity of an approximation is only log2 1
ε
.

This is rather efficient – the complexity as a function ofn is the problem.

Quantum computation may be regarded as the study of those unitary transformations onn qubits that can
be described by a sequence of polynomial inn quantum gates from a universal family of gates.U is “easy”
(implementable) ifU ≈Ugk · · ·Ug1 for k = O(poly(n)). This definition doesn’t depend on our choice of a
(finite) universal gate family, since any particular gate in one gate family can be well-approximated with
a constant number of gates from another universal gate family. The constant factor does not affect the
distinction between polynomial- and exponential-size circuits.

3 Reversible Computation
The classical NAND gate is irreversible. Landauer first pointed out that there is a minimal amount of energy
dissipated from the computer into the environment with every irreversible computation. This minimal energy
loss is equal tokT ln2 and derives from the entropy decrease of the information on erasure (initialization) of
one bit. Entropy decrease of the information is accompanied by an entropy increase of the environment and
dissipation of energy into this. Note that information content is equivalent to our ignorance of the message,
i.e., of the actual state of the bit.

Energy dissipation in electronic circuits has decreased substantially over the last 40 years, by a factor of
about 10 every 4 years, going from about 1 x 10−2J per logical operation in 1940 to about 1 x 10−7J per
logical operation today. Extrapolation of this trend (is this valid?) would imply that the energy dissipated per
logical operation will reach the thermal limitkT atT = 300 K within 10-15 years from now. In that situation
spontaneous fluctuations could cause the circuits to switch and computations to cease being reliable. The
anticipation of this situation led to the development of reversible computation schemes.

We shall illustrate this here by supposing that we are given a classical circuit, for example for primality

C/CS/Phys 191, Fall 2005, Lecture 9 1



Figure 1:The classical, possibly nonreversible circuit C

testing of an input numberM (note that the length of the inputM is dlog2Me), and showing how to construct
a corresponding reversible circuit.

Any classical circuit can be built from three basic pieces: the AND gate∧(a,b) = a · b, the NOT gate
NOT(a) = 1−a, and fan-out (copying). The NOT gate is a reversible, unitary one-qubit operation. But the
AND gate clearly cannot be reversible; since it takes two bits to just one, some information must be lost. (In
particular, after applying an AND gate, we cannot distinguish the cases where the inputs were 00 versus 01 or
10.) The AND gate erases information, which is not reversible. Copying of quantum states is not unitary (no
cloning) but we can copy the mutually orthogonal classical basis states, and this is reversible,(a,0)→ (a,a).
There are a number of ways to construct a reversible circuit corresponding to a nonreversible circuit. For
example, one can build the necessary pieces out of a controlled swap gate (Fredkin gate), a CNOT gate, and
a NOT gate. Here, we will construct a corresponding reversible circuit using the Toffoli gate and the NOT
gate. We encountered the Toffoli gate a couple of lectures ago: it is a doubly-controlled NOT gate with
action(a,b,c) to (a,b,c+abmod 2). It is its own inverse, so it is by definition reversible.

Consider the standard, possibly irreversible, circuitC taking inputx to y = C(x), shown in Figure1. The
Toffoli and NOT gates can be used to replace each of the circuit components to build a reversible circuit
Ĉ taking (x,0k) to (x,y). Actually, some number of ancilla bits, initialized to 0 will also be useful, soĈ
takes(x,0k,0m) to (x,y,0m). (Notice that them ancilla bits are unchanged. . . which will require that they be
returned to their initial states at completion of the circuit.) The replacement procedure is summarized below.

• To achieve an AND gate onaandb, we use the Toffoli gate on input(a,b,0). The output is(a,b,a∧b),
so the third output wire has the result of the AND.

• To copy a bita, use the Toffoli gate on input(a,1,0). The output is(a,1,a), so we have copieda.
Note that this uses both 0 and 1 ancillas; to get a 1 ancilla, we can simply apply a NOT gate to a
constant 0 wire.

• NOT gate remains a NOT gate.

These procedures allow us to construct a reversible circuitC′ corresponding toC, that takes(x,0k,0m) to
(x,C(x),garbagex), summarized in Figure 2. The garbage is what is left over in the original ancilla wires
and is not of interest for the result of the computation. This garbage has to be there because our reversible
operations had extra inputs and outputs. For example, to achieve a reversible AND gate we had three output
wires, whereas the nonreversible AND gate only has one output wire. In order to make this a clean circuit for
computation ofy = C(x), the extra wires should be reset to 0’s by some reversible gates. (If we simply ask
for them to be initialized, this will result in dissipation due to information erasure by Landauer’s priniciple
and will not be reversible.) So how do we do this resetting in a reversible manner? There is a simple trick

C/CS/Phys 191, Fall 2005, Lecture 9 2



Figure 2:The reversible circuit C’ that produces extra garbage

Figure 3:The clean reversible circuit̂C built out ofC′ and(C′)−1.

for removing all the garbage in a reversible manner; we can just run the circuitC′ backwards! Of course,
this would also sendy back tox, which we want to avoid, so before runningC′ in reverse we need to copy
y = C(x) to some additional ancilla wires. This copying is similarly done with the Toffoli gate and uses one
additional 1 ancilla for each bit, but does not create any further garbage. The sequence of steps is then

(x,0k,0m,0k,1) C′
−→ (x,y,garbagex,0

k,1)
copyy−→ (x,y,garbagex,y,1)

(C′)−1

−→ (x,0k,0m,y,1) .

Overall, this now gives us a clean reversible circuitĈ corresponding toC. Notice that the copying could also
have been done with CNOT gates, avoiding the need for an extra ancilla. This would then result in the clean
reversible circuit shown in Figure 3, corresponding to the sequence of steps

(x,0k,0m,0k) C′
−→ (x,y,garbagex,0

k)
CNOT y to ancillas−→ (x,y,garbagex,y)

(C′)−1

−→ (x,0k,0m,y) .

Quantum computation actually was originally (in the late 70s and early 80s) studied to understand whether
unitary constraint on quantum evolution provided limits beyond those explored in classical computation.
A unitary transformation taking basis states to basis states must be a permutation. (Indeed, ifU

∣∣x〉 =∣∣u〉
andU

∣∣y〉 =
∣∣u〉

, then
∣∣x〉 = U−1

∣∣u〉
=

∣∣y〉 .) Therefore quantum mechanics imposes the constraint
that its classical analog is automatically reversible computation. Note that the classical analog has a) no
non-classical gates (so, e.g., no Hadamard gate) and consequently no generation of entanglement, and b)
operates on computational basis states as input state (i.e, no input of superposition states allowed). With
these restrictions, Figure 3 will also be valid as a quantum circuit.

4 Complexity Theory
Complexity theory deals with the scaling of a computation with the resources, in particular, with the number
of bits (qubits) specifying the input (the size of the input). An algorithm is defined as a set of instructions
for solving a given problem, e.g.,a+b =?.

C/CS/Phys 191, Fall 2005, Lecture 9 3



Read the section on Turing machines in Benenti et al., Ch. 1.1. The Church-Turing thesis states that any
function computable by an algorithm can be computed on class of a Turing machine, the paradigm of a
computational device. Furthermore, there exists a universal Turing machine that given a descriptor of a
given computation from a specific Turing machine, can perform that computation with at most polynomial
slowdown. This is related to the strong version of the Church-Turing thesis, which states that any model
of computation can be simulated by a probabilistic Turing machine with at most polynomial increase in the
number of gates. Since gates are equivalent to time, the converse of this implies that if a computational
problem cannot be solved in polynomial time on a probabilistic Turing machine, then it is not solvable.
Shor’s algorithm challenges this since there is a polynomial quantum algorithm, but no known polynomial
time classical algorithm. Whether one may exist or not is still an open problem.

Now consider how computations scale with number of bits. E.g., finding the square of an integer, x. We
needL = log2x bits to represent the number and requires ∝ L2 steps to computex2. Thus finding the
square of a numbers is inP, i.e., s ∝ Lk wherek is an integer. We say that problems with polynomial
complexity are ’easy’, while problems with superpolynomial complexity are ’hard’. These include scalings
s∝ exp(L),s∝ 2n,s∝ n!. Why this distinction? Several reasons:

• usually if one has an algorithm scaling algorithmically one has taken advantage of some mathematical
insight into the problem - polynomial algorithms are generally low order (k = 1,2,3) and one rarely
findsk > 10

• suppose that today you solve a problem of sizen and are asked tomorrow to solve the same problem
for a number of sizen+1. If your algorithm scales asO(2n) you will need twice as much computation
time tomorrow, but if your algorithm scales asO(n2) then you will need only a small fraction more
than today (consider 2n+1 versusn2).

Examples of complexity classifications:

• matrix mutliply O(n3) (now lower order but greater than 2 is possible)

• sorting n itemsO(nlogn)

• factorization of an integerN by number field sieveexpO(n1/3(logn)2/3) (heren = logN is the input
size). For a numberN with 250 digits, this requires about 106 years on a 200 MIPS machine.

Complexity classes

P = solve algorithm in time (gates) polynomial in the number of bits

NP = can verify a solution in polynomial time, e.g., whether numbersa andb factorN (just multiply them
together)

P⊂ NPbut it is an open questions as to whetherNP is actually larger thanP...

NPC= anyNPproblem can be reduced to it (NP−complete), e.g., the traveling salesman problem.

PSPACE= polynomial in space resources but no limit on time

P⊂ PSPACEbut it is also an open question whetherPSPACEis actually bigger thanP...

BPP= bounded probabilistic polynomial algorithm

BQP= quantum probabilistic algorithm with bounded error and running in polynomial time

What is known is that

P⊆ BPP⊆ BQP⊆ PSPACE. The extent ofBQP is not well understood.

C/CS/Phys 191, Fall 2005, Lecture 9 4



Figure 4:Schematic of possible hierarchy of complexity classes.

C/CS/Phys 191, Fall 2005, Lecture 9 5


