C/CS/Piin 191 Quantum Gates and Universality 9/22/05
Fall 2005 Lecture 8

| Rea(iings

Benenti, Casati, and Strini;

Classical circuits and computation Ch.1.2, 2.6
Quantum Gates Ch. 3.2-3.4

Universality Ch. 3.5-3.6

2 Unitary Operators

A postulate of quantum physics is that quantum evolution is unitary. That is, if we have some arbitrary
quantum systert that takes as input a stdig) and outputs a different staté|¢), then we can descriié
as aunitary linear transformationdefined as follows.

If U is any linear transformation, trejointof U, denotedJ T, is defined by(UV, W) = (V,U "W). In a basis,
UT is the conjugate transposeldf for example, for an operator 6£2,

U=(29=V"=Gd -

We say that) is unitaryif UT = U 1. For example, rotations and reflections are unitary. Also, the compo-
sition of two unitary transformations is also unitary (PrddfV unitary, thenUV)' =vTuT=v-ly-1=
(UV) ),

Some properies of a unitary transformatidn
» The rows ofU form an orthonormal basis.
» The colums ofJ form an orthonormal basis.

» U preserves inner products, i @, W) = (UV,UW). Indeed(UV,Uw) = (U|v))"U|w) = (v|UTU |w) =
<v\ W>. ThereforelJ preserves norms and angles (up to sign).

« The eigenvalues df are all of the forme® (sinceU is length-preserving, i.e(V,V) = (UV,UV)).
» U can be diagonalized into the form
di 0
0

0O ..- 0 db

[EnY
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3 Schréclingerjs Equation

Schiddinger’s equation is the equation of motion which describes the evolution in time of the quantum state.

d|y(t))
ih =H )
n v)
Herehis a constant (called Planck’s constant — we’ll usually asshieel), andH is a linearHamiltonian
which is Hermitian,H" = H. Equivalently,H has an orthonormal set of eigenvectos), all with real

eigenvalues;: H|¢) = Ai|¢i).

For those of you who are familiar with Scidinger’s equation, the unitarity restriction on quantum gates
is simply the time-discrete version of the restriction that the Hamiltonian is Hermitian. This is a particular
instance of the general relation between a unitary operator U and a Hermitian operator A

U=¢A,

which follows directly fromUUT = 1, AT = A, henceU T = expg—iAT) = exg —iA).

We will now prove explicitly that if the system satisfies Satlinger’s equation, then its evolution in discrete
time is described by a unitary operator and determine this operator in terms of the eigenvadue@\tf
will assume thaH is time independent.)

Write |y(t)) in the basis of eigenvectors bff:

D) =T a)lo)
J

4

_dZaj|¢;
- 2POZZHZQWM>=Z®1H%>
U

iﬁddé;j =Ajq;
U
ay(1) = a0
J
w(v)) =& 'a(0)[9))
We get that the change after a discrete time difference is unitary:
o it 0 ao
w(t) = . | =umlwo)
0 ot | \ag

In this basisU (t) is diagonal.
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4 Quantum Gates

We already had some simple examples of unitary transforms, or “quantum gates”. Here are most of the
common ones you will encounter.

4.1 One—qu]oit gates:

 Hadamard Gate.
o L(1 1
V21 -1

HI0) =50 +[1) =]+)

HIL) =59 -11) =|-)

NS

The Hadamard Gate is one of the most important gates. NotéHthat H — sinceH is real and
symmetric —andH? = 1I.

In the complex planél can be visualized as a reflection aroury®, or a rotation around /4 followed
by a reflection.

On the Bloch spherél can also be visualized in several ways. One is a rotatiom/@f about the
y-axis, followed by reflection in the x-y plane (see Nielsen and Chuang, p. ). Another is a rotation of
m about the axi§1/v/2,0,1/v/2) (Benenti, p. 111).

Note the action oH on larger number of qubits:

H ®H|00) = H®?|00)

HEM00....00) = 225550 %)

_ |00) +[01) +|10) +|11)
N2

ThusH®" produces an equal superpositioradifcomputational basis states.

» Rotation Gate. This rotates in the complex planéby

R_ cosf —sind
~\ sin@ cosH

* NOT Gate, also known as bit flip gate, Xr(PauliX). This flips a bit from O to 1 and vice versa.
01
NOT = (1 0)

» Phase Flip, also known &(PauliZ).
1 0
(o 4)

The phase flip is a NOT gate acting in the ) = %(\O> +|1)),
Z|+)=|-)andz|-) =|+).

—)= \%(}0} —|1)) basis. Indeed,
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 General Phase Gat;(9d).

R~ g g )

ClearlyZ = R,(x). There are several other special phase gates that are commonhBus&(r/2),
T =, (n/4). The latter is sometimes referred to as #@ gate.

10 B 0 1 iz (€778 0
5= (0 i) T:n/8:<l é.71/4>:é7r/( R

» Phaseflips and bitflips are related by conjugation
Conjugation oX by H means premultiplying by H—! and postmultiplying it byH. ButH = H~L.
Claim: HXH = Z. See Figure 1.

We can prove this by multiplying out the matrices, or by making use of the decompositibinsd
anX and aZ gate:

a2 22 2es 2]
Then ﬂ)x(ﬂ):

7] (1

V2 V2

x+z]| [1+xz] _
V2 || v2
XI4XXZLZI+ZXZ _
4 =

XAZ4Z4-X _
£ =
2z _
F=Z
ConverselyHZH = X (Figure 2). Prove this for yourself.
» Any unitary operation on a single qubit can be constructed with various combinations of gates:
H,R,(d), e.g.,

R.(m/2+ ¢)HR,(8)H|0) = €%/?(cosh/2|0) +€*sing/2[1))
H,X,T =Ry(n/4)

X,Y,Z (Euler rotations)

4.2 Two-qu]oit gates:

» Any one-qubit gate can be tensored with itself or another gate to make a two-qubit gate, as done above
for H @ H. Such tensor products of one-qubit gates have no ability to generate entanglement and are
referred to as ‘local’ gates.
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 Controlled Not CNOT).

CNOT=

O O P

0
1
0

o OO

0
0
1
0010

The first bit of aCNOT gate is the “control bit;” the second is the “target bit.” The control bit never
changes, while the target bit flips if and only if the control bit is 1.

The CNOT gate is usually drawn as follows, with the control bit on top and the target bit on the
bottom:

Note thatCNOT)? = 1, i.e.,CNOT-1 =CNOT.
« SWAP

SWAP=

O OO
O OO
[cNeN Ne
= O OO

4.3 n—qubit gates:
« local n-qubit gates formed as tensor products of one-qubit gatesHéy.,

« Toffoli gate

This is a 3-qubit generalization of the CNOT gate. The third, target, qubit is flipped iff both the first
and second qubits are in stateTIOF F? = 1.

q

The Toffoli gate can be decomposed into a combination of one-qubit and two-qubit gates. See Figures
3and 4.
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44 Useful gate equivalences

* SWAPequals 3>CNOT
See Figure 5.
Suppose we have two qubits in st@z@, y1> X

a c

HEH

= ac|00) +ad|01) 4 bc|10) +bd|11)
Apply the firstCNOT:

ac|00) +ad|01) -+ bd|10) + bc|11)
Apply the secondNOT:

ac|00) + bc|01) + bd|10) +ad|11)
Apply the thirdCNot

ac|00) + bc|01) +ad|10) + bd] 11)

= cal00) +cb|01) +da|10) +db|11)

_|c ® a
| d b
The resulting state iﬁyl,y2> , i.e., the states of the two qubits have been swapped.

» Control and target dENOT can be swapped by conjugating both qubits With
See Figure 6.
Proof: see homework 2.

3] Universality of Gate Sets
5.1 Classical

The NAND gate is universal for classical computation. TMAND gate is the result of applyin OT to
aANDb=aAb=aT7b. See Figure 7.

For any boolean functiof0, 1}" — {0, 1}, there is a circuit built oNANDgates (possibly witkRANOU T=
copy) for that function. Note that neither of these gates are reversible.

In general, the circuit may require an exponential numBesfjates. Functions which can be efficiently
evaluated require only a polynomial numb#rgates. Complexity theory categorizes the scaling of the
resources, esp. the number of gates, with the number ohbitBrovided the gate set is universal, the
distinction between functions which require exponentially large circuits and those which can be computed
with polynomial-size circuits does not depend on the chosen set of gates.

5.2 Quantum

A setG of quantum gates is called universal if for any- 0 and any unitary matri¥) on n qubits, there is
a sequence of gates, ...,g from G such that|U —Uyg, ---Ug,Uy, || < .
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HereUg isV ® 1, whereV is the unitary transformation ok qubits operated on by the quantum ggte
and| is the identity acting on the remaining— k qubits. The operator norm is defined By —U’|| =

MaXy)unit vectod] (U —U’) |V} ||. (Recall that for a vectow, ||w|| = /(w|w).)

Examples of universal gate sets include

CNOT and all single qubit gates

CNOT, Hadamard, and suitable phase flips

CNOT, HadamardX andT (x/8)

Toffoli and Hadamard

Figure 1:An X gate conjugated by gates is & gate.

Figure 2:A Z gate conjugated bl gates is aiX gate.

Inputs Outputs

a b cld ¥V ¢ a a

0 0 010 O O

0 0 110 0 1

0 1 0{0 1 0 b b

0 1 170 1 1

1 0 01 O O

1 0 11 0 1

1 1 0[1 1 1 ¢ c® ab
1 1 1{1 1 O

Figure 3:Toffoli gate, a 3-qubit double controlled NOT gate (bit c is flipped iff both a and b are 1.
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D St e v

Figure 4: A Toffoli gate can be decomposed into a circuit of 1- and 2-qubit gates. ‘Hefe[ é O ] =
Ry(m/2).

1]

Figure 5:A SWAPgate is three back to ba€lNOT gates with control and target qubits alternating.

_ | H >, H

Figure 6:Control and target qubits @NOT can be exchanged by conjugating withon both qubits.

a b |atb

0 0 1 a ‘b
a

0 1 1 b

1 0 1

1 1 0

Figure 7:Classical NAND gate and its truth table.
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