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Fall 2005 Lecture 8

1 Readings
Benenti, Casati, and Strini:

Classical circuits and computation Ch.1.2, 2.6

Quantum Gates Ch. 3.2-3.4

Universality Ch. 3.5-3.6

2 Unitary Operators
A postulate of quantum physics is that quantum evolution is unitary. That is, if we have some arbitrary
quantum systemU that takes as input a state|φ〉 and outputs a different stateU |φ〉, then we can describeU
as aunitary linear transformation, defined as follows.

If U is any linear transformation, theadjoint of U , denotedU†, is defined by(U~v,~w) = (~v,U†~w). In a basis,
U† is the conjugate transpose ofU ; for example, for an operator onC 2,

U =
(

a b
c d

)
⇒U† =

( ā c̄
b̄ d̄

)
.

We say thatU is unitary if U† = U−1. For example, rotations and reflections are unitary. Also, the compo-
sition of two unitary transformations is also unitary (Proof:U,V unitary, then(UV)† = V†U† = V−1U−1 =
(UV)−1).

Some properies of a unitary transformationU :

• The rows ofU form an orthonormal basis.

• The colums ofU form an orthonormal basis.

• U preserves inner products, i.e.(~v,~w)= (U~v,U~w). Indeed,(U~v,U~w)= (U
∣∣v〉)†U

∣∣w〉
=

〈
v
∣∣U†U

∣∣w〉
=〈

v
∣∣w

〉
. Therefore,U preserves norms and angles (up to sign).

• The eigenvalues ofU are all of the formeiθ (sinceU is length-preserving, i.e.,(~v,~v) = (U~v,U~v)).

• U can be diagonalized into the form
eiθ1 0 · · · 0

0
... ... 0

...
... ...

...
0 · · · 0 eiθd


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3 Schrödinger’s Equation
Schr̈odinger’s equation is the equation of motion which describes the evolution in time of the quantum state.

ih̄
d
∣∣ψ(t)

〉
dt

= H
∣∣ψ〉

.

Hereh̄ is a constant (called Planck’s constant – we’ll usually assumeh̄ = 1), andH is a linearHamiltonian
which is Hermitian,H† = H. Equivalently,H has an orthonormal set of eigenvectors|ψi〉, all with real
eigenvaluesλi : H|φi〉= λi |φi〉.
For those of you who are familiar with Schrödinger’s equation, the unitarity restriction on quantum gates
is simply the time-discrete version of the restriction that the Hamiltonian is Hermitian. This is a particular
instance of the general relation between a unitary operator U and a Hermitian operator A

U = eiA,

which follows directly fromUU† = 1, A† = A, henceU† = exp(−iA†) = exp(−iA).

We will now prove explicitly that if the system satisfies Schrödinger’s equation, then its evolution in discrete
time is described by a unitary operator and determine this operator in terms of the eigenvalues ofH. (We
will assume thatH is time independent.)

Write |ψ(t)〉 in the basis of eigenvectors ofH:

|ψ(t)〉= ∑
j

ai(t)|φ j〉

⇓

ih̄
dΣa j

∣∣φ j
〉

dt
= HΣa j

∣∣φ j
〉

= Σa jλ j
∣∣φ j

〉
⇓

ih̄
daj

dt
= λ ja j

⇓

a j(t) = e−
i
h̄λ j ta j(0)

⇓∣∣ψ(t)
〉

= e−
i
h̄λ j ta j(0)

∣∣φ j
〉

We get that the change after a discrete time difference is unitary:

∣∣ψ(t)
〉

=


e−

i
h̄λ1t 0

.
.

0 e−
i
h̄λdt




a0

.

.
ad

 = U(t)
∣∣ψ(0)

〉

In this basis,U(t) is diagonal.
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4 Quantum Gates
We already had some simple examples of unitary transforms, or “quantum gates”. Here are most of the
common ones you will encounter.

4.1 One-qubit gates:
• Hadamard Gate.

H =
1√
2

(
1 1
1 −1

)

H
∣∣0〉

= 1√
2
(
∣∣0〉

+
∣∣1〉

) =
∣∣+〉

H
∣∣1〉

= 1√
2
(
∣∣0〉

−
∣∣1〉

) =
∣∣−〉

The Hadamard Gate is one of the most important gates. Note thatH† = H – sinceH is real and
symmetric – andH2 = I .

In the complex planeH can be visualized as a reflection aroundπ/8, or a rotation aroundπ/4 followed
by a reflection.

On the Bloch sphereH can also be visualized in several ways. One is a rotation ofπ/2 about the
y-axis, followed by reflection in the x-y plane (see Nielsen and Chuang, p. ). Another is a rotation of
π about the axis(1/

√
2,0,1/

√
2) (Benenti, p. 111).

Note the action ofH on larger number of qubits:

H⊗H
∣∣00

〉
≡ H⊗2

∣∣00
〉

=
∣∣00

〉
+
∣∣01

〉
+
∣∣10

〉
+
∣∣11

〉
√

22

H⊗n
∣∣00.....0n

〉
= 1√

2n ∑2n−1
x=0

∣∣x〉
ThusH⊗n produces an equal superposition ofall computational basis states.

• Rotation Gate. This rotates in the complex plane byθ .

R=
(

cosθ −sinθ

sinθ cosθ

)
• NOT Gate, also known as bit flip gate, orX (PauliX). This flips a bit from 0 to 1 and vice versa.

NOT =
(

0 1
1 0

)
• Phase Flip, also known asZ (PauliZ).

Z =
(

1 0
0 −1

)
The phase flip is a NOT gate acting in the

∣∣+〉
= 1√

2
(
∣∣0〉

+
∣∣1〉

),
∣∣−〉

= 1√
2
(
∣∣0〉

−
∣∣1〉

) basis. Indeed,

Z
∣∣+〉

=
∣∣−〉

andZ
∣∣−〉

=
∣∣+〉

.
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• General Phase Gate,Rz(δ ).

Rz(δ ) =
(

1 0
0 eiδ

)

ClearlyZ = Rz(π). There are several other special phase gates that are commonly used:S= Rz(π/2),
T =z (π/4). The latter is sometimes referred to as theπ/8 gate.

S=
(

1 0
0 i

)
T ≡ π/8 =

(
0 1
1 eiπ/4

)
= eiπ/8

(
e−iπ/8 0

0 eiπ/8

)
• Phaseflips and bitflips are related by conjugation

Conjugation ofX by H means premultiplyingX by H−1 and postmultiplying it byH. But H = H−1.

Claim: HXH = Z. See Figure 1.

We can prove this by multiplying out the matrices, or by making use of the decomposition ofH into
anX and aZ gate:

H = 1√
2

[
1 1
1 −1

]
= 1√

2

[[
0 1
1 0

]
+

[
1 0
0 −1

]]
= X+Z√

2

Then
(

X+Z√
2

)
X

(
X+Z√

2

)
=[

X+Z√
2

][
X2+XZ√

2

]
=[

X+Z√
2

][
I+XZ√

2

]
=

XI+XXZ+ZI+ZXZ
2 =

X+Z+Z+−X
2 =

2Z
2 = Z

Conversely,HZH = X (Figure 2). Prove this for yourself.

• Any unitary operation on a single qubit can be constructed with various combinations of gates:

H,Rz(δ ), e.g.,

Rz(π/2+φ)HRz(θ)H
∣∣0〉

= eiθ/2(
cosθ/2

∣∣0〉
+eiφ sinθ/2

∣∣1〉)
H,X,T = Rz(π/4)

X,Y,Z (Euler rotations)

4.2 Two-qubit gates:
• Any one-qubit gate can be tensored with itself or another gate to make a two-qubit gate, as done above

for H⊗H. Such tensor products of one-qubit gates have no ability to generate entanglement and are
referred to as ‘local’ gates.
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• Controlled Not (CNOT).

CNOT=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


The first bit of aCNOT gate is the “control bit;” the second is the “target bit.” The control bit never
changes, while the target bit flips if and only if the control bit is 1.

The CNOT gate is usually drawn as follows, with the control bit on top and the target bit on the
bottom:

td
Note that(CNOT)2 = 1, i.e.,CNOT−1 = CNOT.

• SWAP

×

×

SWAP=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


4.3 n-qubit gates:

• local n-qubit gates formed as tensor products of one-qubit gates, e.g.,H⊗n

• Toffoli gate

This is a 3-qubit generalization of the CNOT gate. The third, target, qubit is flipped iff both the first
and second qubits are in state 1.TOFF2 = 1.

ttd
The Toffoli gate can be decomposed into a combination of one-qubit and two-qubit gates. See Figures
3 and 4.
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4.4 Useful gate equivalences
• SWAPequals 3 xCNOT

See Figure 5.

Suppose we have two qubits in state
∣∣y2,y1

〉
:[

a
b

]
⊗

[
c
d

]
= ac

∣∣00
〉

+ad
∣∣01

〉
+bc

∣∣10
〉

+bd
∣∣11

〉
Apply the firstCNOT:

ac
∣∣00

〉
+ad

∣∣01
〉

+bd
∣∣10

〉
+bc

∣∣11
〉

Apply the secondCNOT:

ac
∣∣00

〉
+bc

∣∣01
〉

+bd
∣∣10

〉
+ad

∣∣11
〉

Apply the thirdCNot:

ac
∣∣00

〉
+bc

∣∣01
〉

+ad
∣∣10

〉
+bd

∣∣11
〉

= ca
∣∣00

〉
+cb

∣∣01
〉

+da
∣∣10

〉
+db

∣∣11
〉

=
[

c
d

]
⊗

[
a
b

]
The resulting state is

∣∣y1,y2
〉

, i.e., the states of the two qubits have been swapped.

• Control and target ofCNOT can be swapped by conjugating both qubits withH

See Figure 6.

Proof: see homework 2.

5 Universality of Gate Sets
5.1 Classical
The NAND gate is universal for classical computation. TheNAND gate is the result of applyingNOT to
aANDb= a∧b = a ↑ b. See Figure 7.

For any boolean function{0,1}n−→{0,1}, there is a circuit built ofNANDgates (possibly withFANOUT=
copy) for that function. Note that neither of these gates are reversible.

In general, the circuit may require an exponential number 2n of gates. Functions which can be efficiently
evaluated require only a polynomial numbernc gates. Complexity theory categorizes the scaling of the
resources, esp. the number of gates, with the number of bitsn. Provided the gate set is universal, the
distinction between functions which require exponentially large circuits and those which can be computed
with polynomial-size circuits does not depend on the chosen set of gates.

5.2 Quantum
A setG of quantum gates is called universal if for anyε > 0 and any unitary matrixU on n qubits, there is
a sequence of gatesg1, . . . ,gl from G such that‖U −Ugl · · ·Ug2Ug1‖ ≤ ε.
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HereUg is V ⊗ I , whereV is the unitary transformation onk qubits operated on by the quantum gateg,
and I is the identity acting on the remainingn− k qubits. The operator norm is defined by‖U −U ′‖ =

max|v〉unit vector‖(U −U ′)|v〉‖. (Recall that for a vectorw, ‖w‖=
√〈

w
∣∣w

〉
.)

Examples of universal gate sets include

• CNOT and all single qubit gates

• CNOT, Hadamard, and suitable phase flips

• CNOT, Hadamard,X andT (π/8)

• Toffoli and Hadamard

H HX Z

Figure 1:An X gate conjugated byH gates is aZ gate.

XHH Z

Figure 2:A Z gate conjugated byH gates is anX gate.

Figure 3:Toffoli gate, a 3-qubit double controlled NOT gate (bit c is flipped iff both a and b are 1.
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Figure 4:A Toffoli gate can be decomposed into a circuit of 1- and 2-qubit gates. HereV =
[

1 0
0 i

]
=

Rz(π/2).

Figure 5:A SWAPgate is three back to backCNOT gates with control and target qubits alternating.

H

H

H

H

Figure 6:Control and target qubits ofCNOT can be exchanged by conjugating withH on both qubits.

Figure 7:Classical NAND gate and its truth table.
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