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1 Readings
Benenti, Casati, and Strini:

No Cloning Ch.4.2

Teleportation Ch. 4.5

2 No Cloning Theorem
A quantum operation which copied states would be very useful. For example, we considered the following
problem in Homework 1: Given an unknown quantum state, either

∣

∣φ
〉

or
∣

∣ψ
〉

, use a measurement to
guess which one. If

∣

∣φ
〉

and
∣

∣ψ
〉

are not orthogonal, then no measurement perfectly distinguishes them,
and we always have some constant probability of error. However, if we could make many copies of the
unknown state, then we could repeat the optimal measurementmany times, and make the probability of
error arbitrarily small. The no cloning theorem says that this isn’t physically possible. Only sets of mutually
orthogonal states can be copied by a single unitary operator.

There are two ways to prove the no cloning theorem. The first follows from the norm preserving property
of the inner product, the second from the linearity of quantum mechanics.

No Cloning Assume we have a unitary operatorUcl and two quantum states
∣

∣φ
〉

and
∣

∣ψ
〉

whichUcl copies,
i.e.,

∣

∣φ
〉

⊗
∣

∣0
〉 Ucl−→

∣

∣φ
〉

⊗
∣

∣φ
〉

∣

∣ψ
〉

⊗
∣

∣0
〉 Ucl−→

∣

∣ψ
〉

⊗
∣

∣ψ
〉

.

Then
〈

φ
∣

∣ψ
〉

is 0 or 1.

Proof 1:
〈

φ
∣

∣ψ
〉

= (
〈

φ
∣

∣ ⊗
〈

0
∣

∣ )(
∣

∣ψ
〉

⊗
∣

∣0
〉

) = (
〈

φ
∣

∣ ⊗
〈

φ
∣

∣)(
∣

∣ψ
〉

⊗
∣

∣ψ
〉

) =
〈

φ
∣

∣ψ
〉2

. In the second equality
we used the fact thatU , being unitary, preserves inner products.

Proof 2: Suppose there exists a unitary operatorUcl that can indeed clone an unknown quantum state
∣

∣φ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

. Then

∣

∣φ
〉
∣

∣0
〉 Ucl−→

∣

∣φ
〉
∣

∣φ
〉

= (α
∣

∣0
〉

+ β
∣

∣1
〉

)(α
∣

∣0
〉

+ β
∣

∣1
〉

)

= α2
∣

∣00
〉

+ βα
∣

∣10
〉

+ αβ
∣

∣01
〉

+ β 2
∣

∣11
〉

But now if we useUcl to clone the expansion of
∣

∣φ
〉

, we arrive at a different state:

(α
∣

∣0
〉

+ β
∣

∣1
〉

)
∣

∣0
〉 Ucl−→ α

∣

∣00
〉

+ β
∣

∣11
〉

.

Here there are no cross terms. Thus we have a contradiction and therefore there cannot exist such a unitary
operatorUcl.
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Note that it is however possible to clone a known state such as
∣

∣0
〉

and
∣

∣1
〉

.

3 Teleportation
Contrary to its sci-fi counterpart, quantum teleportation is rather mundane. Quantum teleportation is a
means to replace thestate of one qubit with that of another. It gets its out-of-this-world name from the fact
that the state is “transmitted” by setting up an entangled state-space of three qubits and then removing two
qubits from the entanglement (via measurement). Since the information of the source qubit is preserved by
these measurements that “information” (i.e. state) ends upin the final third, destination qubit. This occurs,
however, without the source (first) and destination (third)qubit ever directly interacting. The interaction
occurs via entanglement. Figure 1 (see below) shows the set up for quantum teleportation, and Figure 2 (see
below) presents a quantum circuit implementing teleportation of a one-qubit state.

Suppose
∣

∣ψ
〉

= a
∣

∣0
〉

+ b
∣

∣1
〉

and given an EPR pair1√
2
(
∣

∣00
〉

+
∣

∣11
〉

), the state of the entire system is:

1√
2

[

a
∣

∣0
〉 (

∣

∣00
〉

+
∣

∣11
〉)

+ b
∣

∣1
〉 (

∣

∣00
〉

+
∣

∣11
〉)]

= 1√
2

























a
0
0
a
b
0
0
b

























Perform theCNOT operation and you obtain

1√
2

[

a
∣

∣0
〉 (∣

∣00
〉

+
∣

∣11
〉)

+ b
∣

∣1
〉 (∣

∣10
〉

+
∣

∣01
〉)]

= 1√
2

























a
0
0
a
0
b
b
0

























Next we apply theH gate. However, as an aside, lets examine what happens when weapply theH gate to
∣

∣0
〉

and to
∣

∣1
〉

. Recall that:

H = 1√
2

[

1 1
1 −1

]

H
∣

∣0
〉

= 1√
2

[

1 1
1 −1

][

1
0

]

= 1√
2

[

1
1

]

H
∣

∣1
〉

= 1√
2

[

1 1
1 −1

][

0
1

]

= 1√
2

[

1
−1

]

Thus, applyingH to our system we have:
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∣

∣ϕ
〉

= 1√
2

[

1√
2
a
(
∣

∣0
〉

+
∣

∣1
〉)(

∣

∣00
〉

+
∣

∣11
〉)

+ 1√
2
b
(
∣

∣0
〉

−
∣

∣1
〉)(

∣

∣10
〉

+
∣

∣01
〉)

]

= 1
2

























a
b
b
a
a

−b
−b

a

























We can rewrite this expression as:
































[

a
b

]

[

b
a

]

[

a
−b

]

[

−b
a

]

































= 1
2

[∣

∣00
〉 (

a
∣

∣0
〉

+ b
∣

∣1
〉)

+
∣

∣01
〉 (

a
∣

∣1
〉

+ b
∣

∣0
〉)

+
∣

∣10
〉 (

a
∣

∣0
〉

−b
∣

∣1
〉)

+
∣

∣11
〉 (

a
∣

∣1
〉

−b
∣

∣0
〉)]

,

which we can shorten to:

1
2

[

∣

∣00
〉

[

1 0
0 1

]

∣

∣ψ
〉

+
∣

∣01
〉

[

0 1
1 0

]

∣

∣ψ
〉

+
∣

∣10
〉

[

1 0
0 −1

]

∣

∣ψ
〉

+
∣

∣11
〉

i

[

0 −i
i 0

]

∣

∣ψ
〉

]

.

We recognise that the third qubit is now in a state given by theaction of one of the well-known Pauli
operatorsI,X ,Y,Z on the unknown initial state

∣

∣ψ
〉

of qubit 1. The state of qubit 3 can also be written as:
1
2

[
∣

∣00
〉

I
∣

∣ψ
〉

+
∣

∣01
〉

X
∣

∣ψ
〉

+
∣

∣10
〉

Z
∣

∣ψ
〉

+
∣

∣11
〉

iY
∣

∣ψ
〉]

and alternatively as:
∣

∣ϕ
〉

= 1
2

[
∣

∣00
〉

I
∣

∣ψ
〉

+
∣

∣01
〉

X
∣

∣ψ
〉

+
∣

∣10
〉

Z
∣

∣ψ
〉

+
∣

∣11
〉

XZ
∣

∣ψ
〉]

.

Notice that the two-qubit state of qubits 1 and 2 is differentin each term. This result implies that we can
measure the first and second qubit and obtain two classical bits which will tell us what transform was applied
to the third qubit. Thus we can subsequently “fixup” the thirdqubit once we know the classical outcome of
the measurement of the first two qubits. This fixup is fairly straightforward, either applying nothing,X , Z
or bothX andZ. (Recall thatX2 = Y 2 = Z2 = I.)

Lets work through an example. Suppose the result of measuring qubits 1 and 2 is 10. Then from the above,
qubit 3 must be in the stateZ

∣

∣ψ
〉

. The matrix representing the measurement operator is

M10 =

























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























P(10) =
〈

ϕ
∣

∣M†
10M10

∣

∣ϕ
〉

=
〈

ϕ
∣

∣M10

∣

∣ϕ
〉

, since hereM†
10M10. Thus:
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M10

∣

∣ϕ
〉

= 1
2

























0
0
0
0
a

−b
0
0

























Hence:
〈

ϕ
∣

∣M10

∣

∣ϕ
〉

= 1
2 [a,b,b,a,a,−b,−b,a] 1

2

























0
0
0
0
a

−b
0
0

























= 1
4 [a ·a∗ + b ·b∗]

Recall that by definition of a qubit we know thata ·a∗ + b ·b∗ = 1, hence the probability of measuring 01 is
1/4. The same is true for the other outcomes.

What have we done? We have inserted an unknown single qubit quantum state into a system of 3 qubits
where the other two qubits shared some entanglement. We carried out some unitary operations on qubits
1 and 2, and then measured out these two qubits. The result is that the unknown quantum state has been
migrated through entanglement to qubit 3, where it is can be recovered by making a single qubit unitary
operation dependent on the two measured values from qubits 1and 2.

Quantum teleportation has been termed “disembodied transfer of quantum information from one place to
another” (S. Braunstein). It does not violate relativity: the source sends only classical information (the result
of the measurements of qubits 1 and 2) and this must be done by conventional means, e.g., optical fiber. The
source sends no information about the quantum state. Neither does it violate the no-cloning theorem since
the quantum state is destroyed at the source and created at the destination. ie.,

∣

∣ψ
〉
∣

∣0
〉

−→
∣

∣x
〉
∣

∣ψ
〉

.

Here
∣

∣x
〉

is the state of qubit 1 after measurement.

Teleportation illustrates an equivalence between quantumbits (qubits), entanglement bits (e-bits), and clas-
sical bits (c-bits):

1 qubit≡ 1 e-bit + 2 c-bits

Note the difference between making a FAX copy and creating a copy by quantum teleportation. With a
FAX, i) the original is preserved, and ii) only a partial copyis obtained. With quantum teleportation, i) the
original state is destroyed (but not the qubit), and ii) an exact copy of the quantum state results.

Accessible sources on quantum teleportation:

IBM web page: http ://wwww.research.ibm.com/quantumi nfo/teleportation

C. Caves, Science 282 (23 October) 1998, p. 637
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Source

Generate EPR pair and distribute to each end

Transmit classical information

result

Fixup

in state A

Destination
in state A

(destroyed in process)

Figure 1: Teleportation requires pre-transmitting an EPR pair to the source and destination. The qubit con-
taining the state to be “teleported” then interacts with onehalf of this EPR pair, creating a joint state space.
Unitaries are performed in this joint state space and then these 2 qubits are measured. The resulting classical
information of the measurement outcome is transmitted to the destination. This classical information is used
to “fixup” the destination qubit with single qubit unitaries.

|y>H

H

X Z|0>

|0>

|y>

Figure 2: Quantum circuit implementing teleportation. Thefirst two operations on qubits 2 and 3 at the
bottom right form the EPR pair. Note that in this diagram single lines represent quantum data while double
lines represent classical information.
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