C/CS/Phys C191 No Cloning, Teleportation 9/15/05
Fall 2005 Lecture 6

| Readings

Benenti, Casati, and Strini:
No Cloning Ch.4.2
Teleportation Ch. 4.5

2 No Cloning Theorem

A quantum operation which copied states would be very us&fil example, we considered the following
problem in Homework 1: Given an unknown quantum state, eimé or |Lp> use a measurement to
guess which one. If(p> and |t,u> are not orthogonal, then no measurement perfectly digshgs them,
and we always have some constant probability of error. Heweafswe could make many copies of the
unknown state, then we could repeat the optimal measuremany times, and make the probability of
error arbitrarily small. The no cloning theorem says tha ign’'t physically possible. Only sets of mutually
orthogonal states can be copied by a single unitary operator

There are two ways to prove the no cloning theorem. The fitktvis from the norm preserving property
of the inner product, the second from the linearity of quantanechanics.

No Cloning Assume we have a unitary operatdyy and two quantum statésp} and|t,u> whichU, copies,
ie.,

@) ©[0) = |g)@|g)
wyelo) = |y)e|y) .
Then(g|y)isOor 1.

Proof 1: (@|y) = ((¢| ® (0])(|@) ®|0)) = (9| @ (@|)(|¢) @ |@)) = (9| )°. In the second equality
we used the fact that, being unitary, preserves inner products. O

Proof 2. Suppose there exists a unitary operdtr that can indeed clone an unknown quantum state
|@) = a|0) +B|1). Then

9)[0) =% 19)le) =(alo)+Bl1))alo) +|1))
= a®|00) + Ba|10) + aB|01) + B%[11)
But now if we usdJ to clone the expansion ¢&) , we arrive at a different state:
(a]0) +B|1))[0) % a00) +B[11).

Here there are no cross terms. Thus we have a contradictibtharefore there cannot exist such a unitary
operatoiJ . O
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C/CS/Phys C191, Fall 2005, Lecture 6



Note that it is however possible to clone a known state su¢B)aand|1).

3 Te]eportation

Contrary to its sci-fi counterpart, quantum teleportatisrrather mundane. Quantum teleportation is a
means to replace ttstate of one qubit with that of another. It gets its out-of-thistdoname from the fact
that the state is “transmitted” by setting up an entanglatesipace of three qubits and then removing two
qubits from the entanglement (via measurement). Sincenfbemation of the source qubit is preserved by
these measurements that “information” (i.e. state) enda the final third, destination qubit. This occurs,
however, without the source (first) and destination (thidbit ever directly interacting. The interaction
occurs via entanglement. Figure 1 (see below) shows theodet quantum teleportation, and Figure 2 (see
below) presents a quantum circuit implementing telepiomnabdf a one-qubit state.

Supposd () = a|0) +b|1) and given an EPR pa%(\00> +[11)), the state of the entire system is:

a
0
0
a
7 ([80) (|00) +[11)) +b[1) (|00) +[11))] = 75 |
0
0
L b
Perform theCNOT operation and you obtain
F A
0
0
a
7 ([80) (|00) +[12)) +b[1) (|20) +[01))] = 75 | 4
b
b
L 0]

Next we apply thed gate. However, as an aside, lets examine what happens whappletheH gate to
|0) and to|1). Recall that:

=31 )
=1 i ][o]-#l1]

M=% a)1]=%] ]

Thus, applyingH to our system we have:
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[0) =% | Hall0) + 1)) (00) +[12)) + b ([0) - [1)) (|20) +[on))| = 3

We can rewrite this expression as:

=3 [/00) (a]0) +b[1)) +]01) (a[1) +b]0)) +|20) (a]0) —b[1)) +[11) (a]2) —b|0))],

[+
V\_IhiCh \j/é c:';m shorten to:
100y | o 7 lw+lon | § 5|+l | g 7 |lw+lmi] § o |lw)

We recognise that the third qubit is now in a state given byation of one of the well-known Pauli
operatord, X,Y,Z on the unknown initial statey) of qubit 1. The state of qubit 3 can also be written as:

2 [[00) Hw) +[01) X[@) +]10) Z[y) + [11)iY[) ]
and alternatively as:

|#) =2 [[00)1¢) +[01) X[@) +]|10)Z|w) +[1) XZ|w) ].
Notice that the two-qubit state of qubits 1 and 2 is differenéach term. This result implies that we can
measure the first and second qubit and obtain two classtsalhich will tell us what transform was applied
to the third qubit. Thus we can subsequently “fixup” the thytdit once we know the classical outcome of

the measurement of the first two qubits. This fixup is fairhaigthtforward, either applying nothing, Z
or bothX andZ. (Recall thatX? =Y? =72 =1.)

Lets work through an example. Suppose the result of measquihits 1 and 2 is 10. Then from the above,
qubit 3 must be in the staﬁé\w>. The matrix representing the measurement operator is

0O 0 0 0 O 0 0 O]
0 0O0O0OOOO OGO
0 00O0O0OOO OO
M 0 0O0O0OOOO OGO
"1l o00001000
0 00O0O1O00O0
0 00O0O0OOO OO
L0 0 00 0OO0OOO

P(10) = (¢|M] Myg|¢) = (¢|Myo|@), since herevt] M, . Thus:
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Myo|é)

OO T®» OO OO0

Hence:(¢|M,o|¢) = 3[a,b,b,a,a,—b,—b,a] =zila-a +b b

Recall that by definition of a qubit we know thata® + b-b* = 1, hence the probability of measuring 01 is
1/4. The same is true for the other outcomes.

What have we done? We have inserted an unknown single quénitgyu state into a system of 3 qubits

where the other two qubits shared some entanglement. Wedaut some unitary operations on qubits

1 and 2, and then measured out these two qubits. The reshhtishie unknown quantum state has been
migrated through entanglement to qubit 3, where it is canelsevered by making a single qubit unitary

operation dependent on the two measured values from quhitsl 2.

Quantum teleportation has been termed “disembodied gaoe$iquantum information from one place to
another” (S. Braunstein). It does not violate relativitye source sends only classical information (the result
of the measurements of qubits 1 and 2) and this must be donerbgmtional means, e.g., optical fiber. The
source sends no information about the quantum state. Meities it violate the no-cloning theorem since
the quantum state is destroyed at the source and createzl@ddgtination. ie.,

9)[0) — ) [w).

Here\x> is the state of qubit 1 after measurement.

Teleportation illustrates an equivalence between quatitsr(qubits), entanglement bits (e-bits), and clas-
sical bits (c-bits):

1 qubit= 1 e-bit + 2 c-bits

Note the difference between making a FAX copy and creatingpy dy quantum teleportation. With a
FAX, i) the original is preserved, and ii) only a partial cogyobtained. With quantum teleportation, i) the
original state is destroyed (but not the qubit), and ii) aaotxopy of the quantum state results.

Accessible sources on quantum teleportation:
IBM web page: http / /wwww.researctibm.com/quanturnfo/teleportation
C. Caves, Science 282 (23 October) 1998, p. 637
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Generate EPR pair and distribute to each end

e R Destination
¢w\ - N (@Ai‘n\stateA
I :
- NAA
V‘ Fixup
@ result
————— -
Source /7<

Transmit classical information

in state A
(destroyed in process)

Figure 1: Teleportation requires pre-transmitting an ERR o the source and destination. The qubit con-
taining the state to be “teleported” then interacts with bak of this EPR pair, creating a joint state space.
Unitaries are performed in this joint state space and theset2 qubits are measured. The resulting classical
information of the measurement outcome is transmittedeal#stination. This classical information is used
to “fixup” the destination qubit with single qubit unitaries

[0>— H X Z ly>

Figure 2: Quantum circuit implementing teleportation. Tist two operations on qubits 2 and 3 at the
bottom right form the EPR pair. Note that in this diagram &rijes represent quantum data while double
lines represent classical information.
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