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| Readings

To date we have covered the following material in Benentgafiaand Strini:
Ch.2
Ch.3.1-34

2 EPR pairs and information transfer

Nature is consistent with quantum mechanics and not withl lemalism, confirming that for the wavefunc-
tion

¥ =al0) +B|1)

nothing can be known about the coefficieots3 until a measurement is made.
Entangled pairs of qubits such as

) =5 (10u1,) +[10,))

can be used téacilitate sharing or transmission of information, budt to transmit information from A to

B directly. l.e., there is no superluminal transfer of imf@tion happening in an entangled state. Why not?
Because Alice has no control over the result of her measureamsl consequently she cannot control what
Bob measures either.

Many names have been given to describe the effects of ertargl:
“guantum non-locality”

“spooky action-at-a-distance” (Einstein)

“passion-at-a-distance” (A. Shimony)

I can add “belonging-at-a-distance” to these descriptbtherelation between the measurements made on
gubitsa andb.

2.1 Tensor product of operators

Suppos¢v> and\w> are unentangled states @' and¢™", respectively. The state of the combined system is
|v> ® |W> on¢™. If the unitary operatoA is applied to the first subsystem, aBdio the second subsystem,
the combined state becomal/) @ B|w).

In general, the two subsystems will be entangled with eabbrpso the combined state is not a tensor-
product state. We can still appl to the first subsystem ariéi to the second subsystem. This gives the
operatorA® B on the combined system, defined on entangled states by ljir@gending its action on
unentangled states.
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(For example(A® B)(|0) ©|0) ) = A|0) ®B|0). (A®B)(|1) ®|1)) = A|1) ®B|1). Therefore, we define
(A®B)(75]00) + 75|11)) to be 7 (A® B)[00) + 25 (A® B)[11) = 7 (A|0) ® B|0) +A|1) ®B|1)).)

V2 V2
Let|e)),...,|em) be abasis for the first subsystem, and whte 3} _; &;|& )(g| (thei, jth element ofA
isa;). Let|f;),...,|fn) be abasis for the second subsystem, and \Britey | _; by | f,)( f;|. Then a basis

for the combined system |e,> ® \ fj> ,fori=1,....mandj=1,...,n. The operatoA® Bis

(;ajwaxej!) ® (;bk. (s \)

= 2 aiblesl @ ol
= i%%bk|<\a>®|fk>)<<ej\®<fl\).

A®B

Therefore the(i, k), (j,1)th element ofA® B is &by . If we order the basi$e ) @ | fj> lexicographically
(i.e. first according to the indeixthen according to the inde}, then the matrix foA® B is

a;;B a;,B
a,,B a,,B

i.e. in thei, jth subblock, we multiplyaij by the matrix forB.

For practice with these tensor operators, see the examplé®aout in the previous lecture, specifically in
the section calculating quantum analogs of the classicgatletion functions of different measurements for
the Bell inequality. For example, work through the evalomtf

(A@B) = (Y~ |AxB|y~)

[0) = ([0aty) +[1403)

with A= o2 andB’ = cospa? — sinpa?.

3 Example of more eflicient information processing by use of shared en-
tanglement

Consider the following communication protocol in the clessworld: Alice (A) and Bob B) are two

parties who share a common striBgThey receive independent, random b{is Xg, and try to output bits
a,b respectively, such tha€, A Xg = a@ b. (The notatiork Ay takes the AND of two binary variablesand

y, i.e.,is one ix=y =1 and zero otherwisx®y = x+y mod 2, the XOR.)

In the quantum mechanical analogue of this protoéchnd B share the EPR paiH’*>. As before, they
receive bitsX,, Xg, and try to output bits, b respectively, such tha€, A Xg =adb.

However, Alice and Bob’s best protocol for the classical gaas you will prove in the homework, is to
outputa = 0 andb = 0, respectively. Thema® b =0, so as long as the inputX,,Xg) # (1,1), they
are successfulad b = 0= X, A Xg. If X, = Xg = 1, then they fail. Therefore they are successful with
probability exactly 34.
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We will show that the quantum mechanical system can do be®pecifically, if Alice and Bob share an
EPR pair, we will describe a protocol for which the probajoiFPr{XAA Xg=ad b} is greater than 3/4.

We can setup the following protocol:

if X, =0, then Alice measures in the standard basis, and outputeshé.

if X, =1, then Alice rotates byr/8, then measures, and outputs the result.

if Xg = 0, then Bob measures in the standard basis, and outputsrtiernent of the result.

if Xz =1, then Bob rotates by 11/8, then measures, and outputs the complement of the result.

So we need to calculate Pad b £ X, A Xg } for each of the four possible cases:

Priadb#X,AXg} = Z(ﬁ FPr{a®b# X\ A Xg | Xa Xg }
Xa,

First we note that if measurement in the standard basisg/‘ie}dwith probability 1, then if a state is rotated
by 6, measurement will yield0) with probability cos (). [Recall that in general, rotation of a stat) =
a|0) + B|1) by angle6 in the two-dimensional state space gives the rotated Hjdle= a’|0) + B'[1),
where

a’ cosf@ —sinb\ [a
<[3’> - <sin6 cosf > (B) @

Hence the probability of measuring a 0 for the rotated stagivien bya?cos’(8), etc.]

Now we claim

Pr{asb#X,AXg|Xa=0,X3=0} = 0
Pria®b#£ X, AXg|Xa=0,Xg =1} = sir?(1/8)
Pr{adb# X, AXg|Xa=1,X3 =0} = sir?(m/8)
Pria®b#£ X, AXg|Xa =1 Xg =1} = cos(m/4)=1/2 .

Indeed, for the first casé&, = Xg = 0 (soX, A Xg = 0), Alice and Bob each measure in the computational
basis, without any rotation. If Alice measuras= 0, then Bob’s measurement is the opposite, and Bob
outputs the complemenh = 0. Thereforea® b = 0= X, A Xg, a success. Similarly if Alice measures
a= 1, they are always successful.

In the second cas&, = 0, Xg = 1 (X, A Xg = 0). If Alice measures = 0, then the new state of the system

is |01) ; Bob's qubit is in the statél) . In the rotated basis, Bob measures a 1 (and outputs its eamept,

0) with probability cod(71/8). The probability offailure is therefore 1- cog(11/8) = sin?(71/8). Similarly

if Alice measuresa = 1. The third caseX, = 1, Xg = 0 is symmetrical and gives the same result.

In the final caseX, = Xz = 1 (s0X, A Xg = 1), Alice and Bob are measuring in bases rotated 45 degrees
from each other. If Alice measuras= 0, then Bob measures a 1 and outputs a 0 with probabilit§( cgg).

This givesad b= 0# X, A Xg, i.e., afailure. Similarly if Alice measures= 1. So the probability of failure

is now cog(m/4) = 1/2.
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Averaging over the four cases, we find

Priadb#X,AXs} = 1/4(2sirf(m/8)+1/2)
= 1/4(1—cog2xm/8)+1/2)
— 1/4 3/2—[2/2)
~ 1/8(3—14)

= 16/8=.2.

The probability of success with this protocal is therefareuad .8, better than any protocol could achieve
with a classical model.
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